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About This Guide

Using This Guide

Use this guide as you work with the software to learn about the powerful
capabilities of the SimMechanics.

Introductory Chapters

Beginning users with limited Simulink and/or mechanical simulation
experience will especially benefit by starting with the first two chapters:

® Read “Introducing SimMechanics” for an overview of features,
capabilities, and functions, and to run a model from the Demos Library.

® Use the “Building and Visualizing Simple Machines” chapter to open the
block library, review essential model building steps, and build simple
tutorial models.

General Modeling and Simulation Chapters
® Review translational and rotational motion and their SimMechanics
representation in “Understanding Mechanical Concepts.”

® Learn in “Modeling Mechanical Systems” how to represent and analyze
machines with block diagrams.

¢ Continue with “Running Mechanical Models” to set up your simulation,
generate and use code, and troubleshoot errors.

Advanced Features Chapters
¢ The “Visualizing and Animating Machines” chapter explains the
SimMechanics visualization features and interfacing to virtual worlds.

® The “Case Studies” chapter elaborates on the advanced motion analysis
tools of SimMechanics, including inverse dynamics and linearization.



Reference Chapters

¢ Consult “SimMechanics Block Reference” and “SimMechanics Command
Reference” for a description of each block’s operation, parameters, and
characteristics, and for command line functions.

¢ Entries in the “Glossary” define technical terms used in this guide.

® The “Selected Bibliography” lists additional resources for the theory
applicable to SimMechanics.

Note This SimMechanics User’s Guide assumes that you already have some
experience with building and running models in Simulink.

xi
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Getting Online Help

xii

There are a number of easy ways to get online help as you work with
SimMechanics:

® Help Browser — There are several ways to open the Help browser:
= Select Full Product Family Help from the MATLAB Help menu.
= Select Help from the MATLAB View menu.
= Enter doc mech at the command line.
Use the Contents pane on the left of the Help browser to find a section or
chapter. Use the Search and Index features to find specific words.
® Block Library Browser — Click Help on the SimMechanics library menu bar
to open online Help on Simulink, blocks, shortcuts, S-functions, and demos.
® Context-sensitive help — To access the help for a block, right-click the block or
click Help on the block’s dialog box.

® Command line — Enter doc('block name') at the command line to access
the help for a block with the name block name. Spaces and capitalization in
the block name are ignored.
If the same block name appears in other blocksets, MATLAB returns an
Overloaded methods warning in the Command Window to flag those
instances.

® Help desk (via the Web) — Use a Web browser or the Help browser to connect
to the MathWorks Web site at URL http://www.mathworks.com. Follow the
Documentation link on the Support Web page for remote access to the
documentation.

For Further Help and Feedback

The MathWorks hopes that you find SimMechanics powerful and easy to use.
Your suggestions and comments are welcome.

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports

For more contact and program information, visit the MathWorks Web site at
www . mathworks.com.


http://www.mathworks.com

Cetting Online Help

Opening SimMechanics Demos

The SimMechanics documentation makes extensive use of demo models. To
open a SimMechanics demo from the Help browser, click the Demos tab in the
Help Navigator pane on the left. Locate the demo in the list and open it. You
can also open demos by entering the model name at the command line.

Many demos have Help links represented by the information symbol €. Click
on these symbols to open that demo’s documentation in the Help browser.

xiii
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Typographical Conventions

This User’s Guide assumes some or all of these conventions.

Item

Convention

Example

Example code

Function names, syntax,
filenames, directory/folder
names, and user input

Buttons and keys

Literal strings (in syntax
descriptions in reference
chapters)

Mathematical
expressions

MATLAB output

Menu and dialog box titles

New terms and for
emphasis

Omitted input arguments

String variables (from a
finite list)

Monospace font

Monospace font

Boldface with book title caps

Monospace bold for literals

Italics for variables

Standard text font for functions,
operators, and constants

Monospace font

Boldface with book title caps

Italics

(...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

Monospace italics

To assign the value 5 to A,
enter

A=25

The cos function finds the
cosine of each array element.

Syntax line example is
MLGetVar ML_var_name

Press the Enter key.

f = freqspace(n, 'whole')

This vector represents the
polynomial p = x? + 2x + 3.

MATLAB responds with
A =
5

Choose the File Options
menu.

An array is an ordered
collection of information.

[c,ia,ib] = union(...)

sysc = d2c(sysd, 'method"')




Mechanical Units

Mechanical Units

SimMechanics accepts any mixture of MKS (SI), cgs, and English units.

Quantity MKS (SI) cgs English
Length meter (m) centimeter (cm) inch (in),
foot (ft)
Time second (s) second (s) second (s)
Mass kilogram (kg) gram(g) slug (slug)
Velocity meters/second (m/s) centimeters/second inches/second (in/sec),
(cm/s) feet/second (ft/sec)
Acceleration meters/second? centimeters/second? inches/second? (in/s2),
(Gravity) (m/s?) (cm/s?) feet/second? (ft/s?)
Force Newton (N) dyne (dyn) pound (Ib)
Angle radian (rad), radian (rad), radian (rad),
degree (deg) degree (deg) degree (deg)
Inertia kilogram-meter? (kg-m?) gram-centimeter? slug-foot? (slug-ft?)
(g-cm?)
Angular velocity radians/second (rad/s), radians/second (rad/s), radians/second (rad/s),
degrees/second (deg/s) degrees/second (deg/s) degrees/second (deg/s)
Angular radians/second? (rad/s2), radians/second? (rad/s?), radians/second? (rad/s?),
acceleration degrees/second? (deg/s?) degrees/second? (deg/s?)  degrees/second? (deg/s?)
Torque Newton-meter (N-m) dyne-centimeter pound-foot (Ib-ft)

(dyn-cm)

XV
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Mechanical Conventions and Abbreviations

Right-Hand Rule Is Assumed

For rotational motion and vector cross products a X b, the right-hand (RH) rule
is always assumed.

Vector Multiplication

Scalar vector products and matrix-vector multiplication are denoted by a*b
and M*v, respectively.

Common Abbreviations

These are the abbreviations of mechanical terms most commonly used in this
guide:

Abbreviation = Meaning

ca center of gravity
CS coordinate system
DoF degree of freedom
RF reference frame

Glossary Terms

Special mechanical or SimMechanics terms are frequently hyperlinked to
entries in the “Glossary”

xvi



Introducing SimMechanics

SimMechanics is a tool to model mechanical systems for use with Simulink® and MATLAB®.

Welcome to SimMechanics (p. 1-2) Introduction to SimMechanics and the Physical Modeling
environment

Related Products (p. 1-3) Products you might want to use with SimMechanics and
requirements for virtual reality visualization

Running a Demo Model (p. 1-5) A simple conveyor showing how to use SimMechanics blocks
in the Simulink environment

What Can You Do with Survey of what SimMechanics does, including special
SimMechanics? (p. 1-17) simulation features



1 Introducing SimMechanics

Welcome to SimMechanics

1-2

SimMechanics is a block diagram modeling environment for the engineering
design and simulation of rigid body machines and their motions, using the
standard Newtonian dynamics of forces and torques.

With SimMechanics, you can model and simulate mechanical systems with a
suite of tools to specify bodies and their mass properties, their possible motions,
kinematic constraints, coordinate systems, and to initiate and measure body

motions. You represent a mechanical system by a connected block diagram, like
other Simulink models, and you can incorporate hierarchical subsystems.

The internal visualization tools of SimMechanics display and animate
simplified representations of 3-D machines, before and during simulation, in
these environments:

e MATLAB Handle Graphics® window

¢ Virtual world rendered in a virtual reality viewer

SimMechanics and Physical Modeling

SimMechanics is part of Simulink Physical Modeling, encompassing the
modeling and design of systems according to basic physical principles. Physical
Modeling runs within the Simulink environment and interfaces seamlessly
with the rest of Simulink and with MATLAB. Unlike other Simulink blocks,
which represent mathematical operations or operate on signals, Physical
Modeling blocks represent physical components or relationships directly.

What’s in This Chapter

This chapter introduces you to the capabilities of SimMechanics and its
relationship to other MathWorks products:

® “Related Products” on page 1-3

¢ “Running a Demo Model” on page 1-5

® “What Can You Do with SimMechanics?” on page 1-17



Related Products

Related Products

The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with SimMechanics.

Requirements for SimMechanics
You must have the following products installed to use SimMechanics:

e MATLAB 6.5
e Simulink 5.0

Virtual Reality-Based Visualization

The optional virtual reality-based visualization in SimMechanics requires the
Virtual Reality Toolbox Version 3.0. The toolbox ships with its own virtual
reality viewer.

You can improve virtual reality speed and graphics resolution by adding a
graphics accelerator hardware card to your system. Animation of simulations
is sensitive to central processor and graphics card speed and memory.
Experiment to find a reasonable compromise between quality and speed for
your system.

AVI Support for Recorded Handle Graphics Animations

You can record simulation animations in Microsoft Audio Video Interleave
(AVI) format using the built-in Handle Graphics visualization feature of
SimMechanics. To play these recorded AVI files, you need an AVI-compatible
video player. MATLAB has a built-in movie player compatible with AVI.

®

You can also use an external AVI-compatible player, such as Microsoft’s
Windows Media Player, Apple’s QuickTime, or RealNetworks’ RealOne Player.

Other Related Products

The toolboxes listed in the following table include functions that extend the
capabilities of MATLAB. The blocksets include blocks that extend the
capabilities of Simulink. These products will enhance your use of
SimMechanics in various applications.


http://www.real.com/
http://www.microsoft.com/windows/windowsmedia/
http://www.apple.com/quicktime/
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The Physical Modeling Product Family

In addition to SimMechanics, the Physical Modeling product family includes
SimPowerSystems, for modeling and simulating electrical power systems. Use
these products together to model physical systems in Simulink.

For more information about any MathWorks software products, see either

® The online documentation for that product if it is installed or if you are
reading the documentation from the CD

® The MathWorks Web site at www.mathworks.com; see the “Products” section.

Product Description

Control System Toolbox Design and analyze feedback control systems

Optimization Toolbox Solve standard and large-scale optimization
problems

Real-Time Workshop® Generate C code from Simulink models

SimPowerSystems Model and simulate electrical power systems

Simulink Design and simulate continuous- and
discrete-time systems

Stateflow® Design and simulate event-driven systems

Virtual Reality Toolbox Create and manipulate virtual reality worlds

from within MATLAB and Simulink

xPC Target Perform real-time rapid prototyping using PC
hardware



http://www.mathworks.com

Running a Demo Model

Running a Demo Model

This demo model uses a few blocks in the library to simulate a simple machine
with feedback control. You will see how SimMechanics implements the model
in conjunction with standard Simulink features.

The demo model simulates a conveyor belt loading mechanism. A simple
controller (not shown), with a sensor and an actuator, guides the mechanism
with a saturation limit and anti-windup logic for the applied torque. The
controller is user-adjustable and sets the stopping point for the pusher.

Link 4

Mounting
Ground 1

Link 1
Ground 2

Conveyor Loader Mechanism
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What This Demo lllustrates
The conveyor mechanism demo illustrates some important features of

SimMechanics:

® Representing bodies and degrees of freedom with Body and Joint blocks,
respectively

® Using SimMechanics blocks with normal Simulink blocks

¢ Feeding in and feeding out Simulink signals to and from SimMechanics
blocks with Actuator and Sensor blocks, respectively

¢ Encapsulating groups of blocks into subsystems

® Visualizing and animating a machine by its component bodies

Caution You might want to make modifications to this demo model. To avoid
errors, be sure

® Not to attempt connecting Simulink signal lines directly to SimMechanics
blocks other than Actuators and Sensors
® To keep the collocation of the Body coordinate system origins on either side

of each assembled Joint to within assembly tolerances

Saving modified demo models in a different directory from the demos is
recommended.

Opening the Model

You can open the demo model in several ways. Here is the general procedure
for starting SimMechanics demos in the Launch Pad area of the MATLAB
desktop:

1 Open the SimMechanics entry.

2 Double-click the Demos subentry in the tree. This opens the MATLAB Help
browser with Demos selected in the left Help Navigator pane.

3 Double-click Conveyor Mechanism from the list of models in the list on the
left or on the right.



Running a Demo Model

Alternatively, you can open the same MATLAB Demos window by entering
demos at the MATLAB command line.

To get started quickly with this specific demo, you can use either of these steps:

® Enter mech_conveyor at the MATLAB command line.

® Online Help users can click mech_conveyor here.

The Block Diagram Model

The block diagram model opens in a model window.

Start Stop

=1ojx]|

ZImech conveyor
Fle Edit View Simulationy

DSH& 2@
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51
C82

(7]
T—- CF ; cs2 My oSt ‘F ; cs2 Mg oSt CF
Ground_1
Revalute? Lirik1 Revalutel LirkcA Revalute
(T’ Revoluta3
o Joint Actuator \‘6/}
Conveyor Mechanism
Simple conveyor Ioader guided by feedback controller with saturation limit *—
and anti-windup logic. Controller actuates Revolute crank to mawve Pusher
Ground_3 to user-set Reference Position.
Ready 1262 | | lodeds F

At the same time, a Scope block also opens with two plots, labeled Measured
Position and Torque, respectively.

1-7
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What the Model Contains
Note some features of the model:
® Tgnore the Position Controller, Joint Sensor, and Joint Actuator blocks for a

moment. Note that the loading mechanism follows the tree of bodies and
joints shown in the Conveyor Loader Mechanism figure on page 1-5:

= There are four rotating link bodies and one sliding pusher body, as well as

three ground points on the immobile mounting represented by Ground
blocks. Double-click the Body and Ground blocks to see their dialog boxes.

The pusher slides and the links rotate relative to one another and to the
ground points on the mounting. There are seven apparent degrees of
freedom (DoF's) in the machine, represented by seven Joints, but the
geometry constrains the motion to one actual DoF. Double-click the
Revolute blocks to see how rotational DoF's are expressed in their dialog
boxes.

The Prismatic block expresses the linear motion of Pusher relative to
Ground_2. The Revolute block expresses the angular motion of Link4 (the
crank of the whole mechanism) relative to Ground_1.

® The Joint Sensor detects the position of Pusher via the Prismatic block. The
Joint Actuator applies torque to Link4 via the Revolute block. Double-click
the Sensor and Actuator blocks to view how the machine motions and
forces/torques are transformed into Simulink signals.

¢ The Position Controller subsystem converts the Pusher position information
into a feedback signal to actuate Revolute and thus Link4. You can open the
Position Controller block to view this subsystem, which is made of normal
Simulink blocks.
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L= mech_conveyor/Position Controller =1o|x]
File Edt “iew Simulation Fomat Tools Help
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Equilibriurm
Ready 1203 odedb

¢ The Reference Position block gives you control over the stopping position of
the pusher by modulating the control signal that actuates Revolute.
Maintaining the initial pusher position requires a fixed torque on Revolute.

® In the Scope block, you can view both the Pusher position in millimeters
(mm) relative to Ground_2 as the Measured Position plot and the torque in
Newton-meters (N-m) applied to Link4 relative to Ground_1 as the Torque

plot.

Starting the Demo

You can now run the model as it is when you first open it:

1 In the Simulation menu, select Simulation parameters. The Simulation
parameters dialog box appears:

a The default Stop time is inf, so the simulation keeps running once you
start it. You should leave it at inf and stop the simulation manually the
first few times you run it.

Later you can apply a finite stop time (in seconds) if you want.

b Leave the Solver options entries at default values and close the box.

1-9
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2 From the Simulation menu, select Start. In Microsoft Windows, you can
also click the Start button in the model window toolbar.

The measured position of the pusher and the torque applied to maintain that
position start and remain essentially constant in the Scope plots. The
applied torque is adjusted to maintain the initial pusher position.

3 To see greater detail at the simulation start, stop the simulation before the
time passes 20 seconds and zoom in on the Scope plots.

Modifying the Model

Here are two modifications of the demo you can try. One illustrates the simple
user-driven controller you can adjust to change the motion of the pusher. The
other illustrates a powerful feature of SimMechanics, visualization of a
machine and animation of its simulated motion.

To make these modifications, it is best to close and restart the demo.

1-10
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Changing the Pusher Reference Position

The Reference Position block is actually a Simulink Slider Gain block (from the
Simulink Math Library) and controls where the pusher comes to rest.

You can adjust the Reference Position block to change where the pusher stops:

You can apply changes to the reference position to the simulation in two ways:

Open the Reference Position block. You see an adjustable slider to set the
position of the pusher’s rest point.

Enter values in the Low and High fields to set the lower and upper limits of
the allowed slider range. The defaults in this demo are 0 and 0.2, with
implied units of meters (m).

Enter a value in the central field to set the pusher stopping point, which you
can also adjust by clicking and dragging the slider between the lower and
upper limits. The default is 0 (meters).

® Reset the Reference Position block first, then start the demo. You see the

pusher trajectory track differently now, toward the new stopping point.

For example, resetting the Reference Position to 0.1 and restarting the demo
produces these Scope plots, with Autoscale and zooming applied. The
asymptotic measured position now tends to 100 mm (0.1 m), and the torque
applied to keep the pusher there has changed:

1-11
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e Start the demo with the Reference Position block open and move the slider
up and down as the simulation runs. Watch the Scope. The measured
position and the necessary torque adjust to follow the new reference position.

Visualizing and Animating the Conveyor

You can visualize the conveyor mechanism as a static machine and animate the
simulation as well with the two visualization tools:

® One tool, based on MATLAB Handle Graphics, is built into SimMechanics.
® The other tool requires the Virtual Reality Toolbox.

With either visualization tool, you can display the bodies of the machine in two
possible abstract representations:

® Equivalent ellipsoids use the inertia tensors and masses of the bodies. Each

body has a unique homogeneous ellipsoid equivalent to it in mass and inertia
tensor.

® Convex hulls use the attached Body coordinate systems (CSs) of the bodies.
A body must have at least four non-coplanar Body CS origins to enclose a
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convex hull with nonzero volume. If the Body has fewer than four Body CS
origins or if the origins are coplanar or collinear or coincident, the
visualization tools render it with simpler figures (triangle, line, or point).

Handle Graphics Visualization. First try visualizing the conveyor with Handle
Graphics:

1 From the Simulation menu, select Mechanical environment. The
Mechanical Environment Settings dialog box appears.

2 Click the Visualization tab. Select the Draw machine in initial state and
Animate machine during simulation check boxes.

3 Leave the other defaults as they are and close the dialog.

Visualization Control Default Value

Draw machine using MATLAB Graphics
Represent bodies as Convex hulls

Update machine When diagram changes

A MATLAB Handle Graphics window appears, displaying the conveyor
machine at rest in its initial state.

The bodies are rendered in the default representation, as convex hulls. The
bodies and Body coordinate system axis triads are also displayed as defaults.

4 Change Reference Position to a nonzero value such as 0.1 or 0.2.

5 Restart the simulation. The Handle Graphics window animates the machine
in motion. You can compare this motion to the plots in the scope.
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6 Click a body in the Handle Graphics window. The model window comes back
into focus with the corresponding Body block highlighted in color.

7 Open the special SimMechanics menu in the Handle Graphics menu bar.

Here, you can reconfigure the special display properties for machines:
bodies, Body CS axis triads, colored fill-in patches connecting Body CSs on
the same body, and user viewpoint orientation.

8 Close the Handle Graphics window when you are finished.

Virtual Redlity Visualization. Now visualize the conveyor in virtual reality scene:
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1 From the Simulation menu, select Mechanical environment. The
Mechanical Environment Settings dialog box appears.

2 Click the Visualization tab. Select the Draw machine in initial state and
Animate machine during simulation check boxes.

3 Using the pull-down menus, change Draw machine using to Virtual
Reality Toolbox and Represent bodies as to Equivalent ellipsoids.

Leave Update machine as When diagram changes.

A virtual reality viewer opens, displaying the conveyor machine at rest in its
initial state.

The bodies are rendered as equivalent ellipsoids.
4 Restart the simulation. The viewer now animates the machine in motion.
5 Use the virtual reality controls at the bottom of the virtual scene to change

the user viewing position and orientation:

= Moving the central dial pointer around the outside of the dial circle, you
can change the direction of your movement. Pressing the dial pointer itself,
you then move in that direction.

= Left-clicking and rolling your mouse in the scene changes your viewpoint.

= Right-clicking in the scene opens the control menu.

See “Viewing Machines in Virtual Reality” on page 6-24 for how to control
the virtual scene.
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Bodies

Viewpoint control buttons  Central dial Navigation methods

6 While the animation is running, open the Reference Position block and move
the slider up and down. In addition to what you can see in the Scope plots,
the viewer directly animates the pusher trajectory in space as the
mechanism responds to your adjustment.
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What Can You Do with SimMechanics?

SimMechanics is a set of block libraries and special simulation features for use
in the Simulink environment. You connect SimMechanics blocks to normal
Simulink blocks through special Sensor and Actuator blocks.

The blocks in these libraries are the elements of a platform for modeling
mechanical systems consisting of any number of rigid bodies, connected by
joints representing translational and rotational degrees of freedom.
SimMechanics can represent machines with components organized into
hierarchical subsystems, as in normal Simulink models. You can impose
kinematic constraints, apply forces/torques, integrate Newton’s equations, and
measure resulting motions. You saw some of these features at work in the
Conveyor Loader demo model.

Glossary Terms For an explanation of special terms, see “Summary of
Technical Vocabulary” on page 3-11 and the “Glossary.”

Modeling Machines with SimMechanics

SimMechanics extends Simulink with a library of blocks for specifying a
mechanical system’s components and properties and solving the system’s
equations of motion. The blocks are similar to other Simulink blocksets, with
some properties unique to SimMechanics.

These are the major steps you follow, using SimMechanics, to build and run a
model representation of a machine:

® Specify body inertial properties, degrees of freedom, and constraints, along
with coordinate systems attached to bodies to measure positions and
velocities.

® Set up sensors and actuators to record and initiate body motions, as well as
apply forces/torques.

¢ Start the simulation, calling the Simulink solvers to find the motions of the
system, while maintaining any imposed constraints.

¢ Visualize the machine while building the model and animate the simulation
while running, using the Handle Graphics or virtual reality-based
visualization tool.
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Bodies, Coordinate Systems, Joints, and Constraints
SimMechanics supports user-defined Body blocks specified by their masses
and inertia tensors. You connect the bodies to one another with joints
representing the possible motions of bodies relative to one another, the
system’s degrees of freedom (DoF's). You can impose kinematic constraints on
the allowed relative motions of the system’s bodies. These constraints impose
restrictions on body DoF's or drive body motions as explicit functions of time.

The SimMechanics interface gives you many ways to specify coordinate
systems (CSs), constraints/drivers, and forces/torques. You can

e Attach coordinate systems (Body CSs) to different points on various Body
blocks to specify local axes and origins for actuating and sensing

® Take composite Joint blocks from the SimMechanics library or extend the
existing Joint library by constructing your own composite Joints from
primitive Joint blocks

® Use other Simulink tools as well as MATLAB expressions in the
SimMechanics environment

User-Defined Local Coordinate Systems

SimMechanics automatically sets up a single absolute inertial reference frame
and coordinate system (CS) called World. You can also set up your own Local
CSs:

® Grounded CSs attached to Ground blocks at rest in the World RF but
displaced from the World CS origin

® Body CSs fixed on the system’s rigid bodies and moving rigidly with the
bodies

Constraint Solver Types

Specifying functional algebraic or kinematic relations between any two bodies,
you can constrain the motion of the system by connecting Constraint blocks to
pairs of Bodies. Connecting Driver blocks applies time-dependent constraints.

The applied constraints are interpreted in one of three constraint solver types:
tolerancing, machine precision, or stabilizing solvers.
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Sensors, Actuators, and Force Elements

Sensors and Actuators are the blocks you use to interface between
non-SimMechanics Simulink blocks and SimMechanics blocks. Force Elements
represent internal forces that require no external input.

® Sensor blocks detect the motion of Bodies and Joints.

= Sensor block outputs are Simulink signals that you can use like any other
Simulink signal. You can connect a Sensor block to a Simulink Scope block
and display the motions in a system, such as positions, velocities, and
accelerations, as functions of time.

= You can feed these Sensor output signals back to a SimMechanics system
to specify forces/torques in the system, via Actuator blocks.

¢ Actuator blocks specify the motions of Bodies or Joints.

= They accept force/torque signals from Simulink and can apply
forces/torques on a body or joint from these signals. The Simulink signals
can include Sensor block outputs fed back from the system itself.

= They detect discrete locking and unlocking of Joints to implement
discontinuous friction forces.

= They specify the position, velocity and acceleration of bodies or joints as
explicit functions of time.

= They prepare a system’s initial kinematic state (positions and velocities)
for forward integration of the Newtonian dynamics.

Force Elements model internal forces between bodies or acting on joints
between bodies. Internal forces depend only on the positions and velocities of
the bodies themselves, independent of external signals.

Simulating Mechanical Motion

SimMechanics Analysis Modes

SimMechanics provides four modes for analyzing the mechanical systems you
simulate:

¢ Forward dynamic analysis integrates applied forces/torques, maintaining
imposed constraints, and obtains resulting motions.

¢ Inverse dynamic analysis finds the forces/torques necessary to produce
user-specified motions in topologically open systems.
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¢ Kinematic analysis finds the forces/torques necessary to produce
user-specified motions in topologically closed (loop) systems.

¢ Trimming analysis searches for steady or equilibrium states of a system.

In the Conveyor Loader demo model, you analyzed the motion in the Forward
Dynamics mode. The model specified forces/torques and initial conditions, then
integrated Newton’s laws to obtain the machine’s motion.

Mathematical Conditions for Rigid Body Motion to Be Determined. For the Forward
Dynamics problem to be mathematically solvable, the system must satisfy
certain conditions:

® The masses and inertia tensors of all bodies are known.
e All forces and torques acting on each body at each instant of time are known.

® Any constraints among DoF's are specified as constraints among positions
and/or velocities alone. These are kinematic constraints; that is, zeroth- and
first-order differential constraints. If the constraints are mutually consistent
and are fewer in number than the DoFs, the system’s motion is nontrivial
and can be found by integration.

® Initial conditions (initial positions and velocities) are specified and
consistent with all constraints.

In Inverse Dynamics or Kinematics analysis modes, you specify the motions
instead and obtain the forces/torques needed to produce those motions.

Forward Dynamics

In the Forward Dynamics mode, SimMechanics uses the Simulink suite of
ordinary differential equation (ODE) solvers to solve the mechanical ODEs
(Newton’s equations). The ODE solvers project the motion of the DoF's onto the
mathematical manifold of the kinematic constraints and yield the
forces/torques of constraint acting within the system.

You can also use the Simulink linearization tool to linearize the forward motion
of a system and obtain its response to small perturbations in forces/torques,
constraints, and/or initial conditions.

Inverse Dynamics

SimMechanics can solve the reverse of the forward dynamics problem: instead
of starting with given forces/torques and finding the resulting motions, the
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Inverse Dynamics mode determines the forces/torques needed to produce a
given set of motions that you apply to the machine. This mode only works with
open topology systems (model diagrams without closed loops).

Kinematics

You cannot analyze machines represented by model diagrams with closed
topology (models with loops) using the Inverse Dynamics mode. The
Kinematics mode analyzes the motion of closed-loop models, including the
extra internal invisible constraints arising from loop closures.

You also use the Kinematics mode to determine the forces/torques needed to
produce a given set of motions applied to a closed-loop machine model.

Constraints can only appear in closed loops, so you use the Kinematics mode to
analyze constraint forces/torques as well.

Trimming

Finally, the Trimming mode searches for steady or equilibrium states in a
system’s motion using the Simulink trim command. The states, once found, are
the starting point for linearization analysis using the Simulink 1inmod and
dlinmod commands.

Visualizing and Animating Machines

Virtual Reality Visualization The SimMechanics virtual reality
visualization feature requires the optional Virtual Reality Toolbox. Refer to the
Virtual Reality Toolbox User’s Guide for full information on installing this
toolbox.

You can also animate more realistic renderings of bodies by creating your own
virtual world with the Virtual Reality Toolbox. Animating the motion of your
custom virtual bodies with sensor signals requires building your own interface
from SimMechanics to your virtual world. See “Creating Custom Machine
Visualizations” on page 6-30.

We recommend you allocate generous central processor power, graphics card
speed, and memory for the virtual reality feature, especially for animation.
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SimMechanics supports two internal visualization/animation tools, powerful
aids in building, animating, and debugging machines that you saw in the
Conveyor Loader demo:

¢ The Handle Graphics-based visualization tool built into SimMechanics. The
machine is displayed in a Handle Graphics window. You can use all the
standard Handle Graphics functions to change the viewer perspective. The
window also has options special to SimMechanics.

® An optional visualization tool, called internally by SimMechanics, based on
the Virtual Reality Toolbox. The machine is displayed in a virtual scene
through a virtual reality viewer. You can change user perspective in the
virtual scene with the viewer controls, but you can change the bodies’
properties only by changing their blocks in the model window.

Both tools display the bodies and their Body coordinate systems (CSs) in an
abstract, simplified form. You can render the bodies as convex hulls or as
equivalent ellipsoids.

Visualizing Bodies During Machine Building

One way to use the visualization tool is while you're building your machine:

® You can open a virtual world or Handle Graphics window before you start to
build and then watch the bodies appear and be configured in the display as
you create and configure them in your model window.

® You can also build a model without visualization, then open a virtual scene
or Handle Graphics window when you’re done to see the completed machine.

The first approach is especially useful if you're just starting to learn how to use
SimMechanics and/or modeling complex machines. In that case, visualization
can guide you in assembling the body geometries and connections.

Representing Bodies

The visualization tools display your machine bodies in a virtual world or
Handle Graphics window. The tools have two abstract shapes to represent the
bodies, one derived from body mass properties, the other from bodies’ attached
Body coordinate systems (CSs). These shapes are geometric schematics,
because SimMechanics accepts only limited body information:
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Mass properties. A rigid body’s dynamics are partly determined by the body’s
total mass and how that mass is distributed in space, as encapsulated in its
inertia tensor. Any rigid body has a unique corresponding homogeneous
ellipsoid with the same mass and inertia tensor.

Using these equivalent ellipsoids is one visualization mode of representing a
body in space. The relative sizes of the ellipsoid axes indicate the relative
inertial moments about each axis.

Here is a rigid body represented by its virtual reality equivalent ellipsoid.

Ellipsoid
surface
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Geometric properties. In SimMechanics, every body is represented by a Body
block with at least one attached Body CS. The minimum Body CS origin is
located at the body’s center of gravity (CG).

Other Body CSs can also be attached to a Body. In particular, any Joint,
Constraint/Driver, Actuator, or Sensor attached to a Body must be attached at
a Body CS origin.

The set of Body CS origins can be enveloped by a surface; if there are more than
three non-coplanar origins, the surface encloses a volume. The minimal surface
with outward-bending curvature enveloping this set is the convex hull, which
becomes the other abstract shape for visualizing a body in space. Fewer than
four CS origins produce simpler Body figures.
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Here is the same body as a convex hull in a virtual scene. The Body CS origins
are coplanar in this case, and the hull is two triangles.

Body (S origins

Convex hull

World (S
triad

Virtual reality controls

Animating Machine Motion During Simulation

Besides rendering your machine bodies either while you build a model or as a
completed model, you can also keep the visualization tools open while a model
is running in the Simulink model window. The Handle Graphics window or
virtual reality viewer animates the simulation of the bodies’ motions, whether
you choose to render the bodies as ellipsoids or as convex hulls, and moves in
parallel with however the model changes on the Simulink side.
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Building and Visualizing
Simple Machines

Constructing simple mechanical models with SimMechanics is easy to learn if you already know how
to make Simulink models. If you are not already familiar with Simulink, please see the Simulink
documentation.

Introducing the SimMechanics Block Overview of the SimMechanics block libraries for

Libraries (p. 2-2) representing machine components
Creating SimMechanics Models Summary of the most important steps for representing a
(p. 2-7) machine by a SimMechanics model

Building a Simple Pendulum (p. 2-11) A beginning tutorial to model and simulate a simple
one-degree-of-freedom system

Visualizing a Simple Pendulum A tutorial that shows how to visualize a simple machine
(p. 2-30) with SimMechanics
A Four Bar Mechanism (p. 2-36) A more advanced tutorial that models and simulates a

closed-loop machine
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Introducing the SimMechanics Block Libraries

SimMechanics is organized into hierarchical libraries of closely related blocks.
The next section, “Viewing the Blocks,” shows how to view these libraries and
gives you a summary of what they contain:

¢ “Bodies Library” on page 2-4

e “Joints Library” on page 2-5

® “Constraints & Drivers Library” on page 2-5

® “Sensors & Actuators Library” on page 2-5

® “Force Elements Library” on page 2-6

e “Utilities Library” on page 2-6

® “Demos Library” on page 2-6

Viewing the Blocks

There are several ways to get to the top-level SimMechanics library on
Microsoft Windows and UNIX platforms.
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Microsoft Windows Platforms

Microsoft Windows users can access the blocks through the Simulink Library
Browser. Expand the SimMechanics entry in the contents tree.
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You can also access the blocks directly inside the SimMechanics library in

several ways:

¢ In the Simulink Library Browser, right-click the SimMechanics entry and
select Open the 'SimMechanics' Library. The library appears.

® Click the SimMechanics entry in the Launch Pad area to expand its tree, and
then open the Block Library subentry.

® Enter mechlib at the MATLAB command line prompt.
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UNIX Platforms

UNIX users can click the Simulink icon on the MATLAB menu bar, open the
Blocksets & Toolboxes library and then SimMechanics. You can also enter
mechlib at the command line.

The SimMechanics Library

Once you perform one of these preceding steps, the SimMechanics library
opens.

=] Library: mblibv1 - o] x|

File Edit “ew Format Help
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Copyright (=] 1998-2002 The Mathworks, Inc.

F—> F—> F>
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O
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Ready 10026 |Locked 4

Note This library displays six top-level block groups. You can expand each
library by double-clicking its icon. The Joints library contains two second-level
sublibraries. The Demos library opens the demos list in the Help browser.

The following sections summarize the blocks in each library. For an
explanation of special terms, see “Summary of Technical Vocabulary” on
page 3-11 and the “Glossary.” You can view the general SimMechanics
reference in the “SimMechanics Block Reference.”

Bodies Library

The Bodies library provides the Body block for representing user-defined
bodies by their mass properties (masses and inertia tensors), their positions
and orientations, and their attached Body coordinate systems (CSs). This
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library also contains the Ground block representing immobile ground points,
which have their own Grounded CSs.

Joints Library

The Joints library provides the blocks to represent the relative motions
between bodies as degrees of freedom (DoF's). The library is made up of
assembled Joints listed individually and two sublibraries of specialized Joint
blocks.

An assembled joint restricts the Body CSs on the two bodies to which it is
connected. The assembled Joints are the primitive Prismatic, Revolute, and
Spherical blocks and ready-made composite Joints. Unless it is explicitly
labeled as disassembled, you can assume a generic Joint block is assembled.

Joints/Disassembled Joints Sublibrary. The Disassembled Joints sublibrary
provides blocks for disassembled joints, special joints that do not restrict the
Body CSs on the two connected bodies or the DoF axes of the two bodies. You
can only use Disassembled Joints to close a loop in your machine. You cannot
sense or actuate Disassembled Joints.

Joints/Massless Connectors Sublibrary. The Massless Connectors sublibrary
provides blocks for massless connectors, composite joints whose DoF's are
separated by a fixed distance. You cannot actuate or sense Massless
Connectors.

Constraints & Drivers Library

The Constraints & Drivers library provides blocks to specify prior restrictions
on DoFs between Bodies. These restrictions can be time-independent
constraints or time-dependent driving of DoFs with Simulink signals.

Sensors & Actuators Library

The Sensors & Actuators library provides blocks for sensing and initiating the
motions of joints and bodies. These blocks play a special role in connecting
SimMechanics blocks to other Simulink blocks, as described in “Connecting
SimMechanics Blocks” on page 4-3, “Modeling Actuators” on page 4-40, and
“Modeling Sensors” on page 4-60.
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Force Elements Library

The Force Elements library provides blocks for creating forces or torques
between bodies. These blocks model forces internal to your machine.

Utilities Library
The Utilities library contains miscellaneous blocks useful in building models.

Demos Library

The Demos library contains prewritten Simulink demonstration models using
SimMechanics and other Simulink blocks, as well as Stateflow blocks.
Double-clicking the Demos library icon calls the Help browser and displays the
SimMechanics demos list.

In the Help browser, click the Demos tab in the Help Navigator pane to the
left. To see the demos list, expand the Simulink entry, then click the
SimMechanics subentry. Double-click a demo model name in the list to open it.
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Creating SimMechanics Models

To become comfortable building mechanical models, you might find it helpful
to work through the guided examples in subsequent sections of how to
configure and put together elements of SimMechanics to simulate simple
machines. This section gives you an overview of the model-building process
before you start:

¢ “Essential Steps to Build a Model”
¢ “Essential Steps to Configure and Run a Model” on page 2-9

The most important special terms used in this guide are summarized in
“Summary of Technical Vocabulary” on page 3-11.

Essential Steps to Build a Model

You use the same basic procedure for building a SimMechanics model
regardless of its complexity. The steps are similar to those for building a
regular Simulink model. More complex models add steps without changing
these basics:

1 Select Ground, Body, and Joint blocks. From the Bodies and Joints libraries,
drag and drop the Body and Joint blocks needed to represent your machine,
including at least one Ground block, into a Simulink model window.
Ground blocks represent immobile ground points at rest in absolute (inertial)
space.

Body blocks represent rigid bodies.
Joint blocks represent relative motions between the Body blocks to which
they are connected.
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2 Position and connect blocks. Place Joint and Body blocks in proper relative

position in the model window and connect them in the proper order. The
essential result of this step is creation of a valid tree block diagram made of

Ground — Joint — Body — Joint — Body — ... — Body

with an open or closed topology and where at least one of the bodies is a
Ground block.

A Body can have more than two Joints attached, marking a branching of the
sequence. But Joints must be attached to two and only two Bodies.

Configure Body blocks. Click the Body blocks to open their dialog boxes;
specify their mass properties (masses and moments of inertia), then position

and orient the Bodies and Grounds relative to the World coordinate system
(CS) or to other CSs. You set up Body CSs here.

Configure Joint blocks. Click each of the Joint blocks to open its dialog box
and set translation and rotation axes and spherical pivot points.

Select, connect, and configure Constraint and Driver blocks. From the
Constraints & Drivers library, drag, drop, and connect Constraint and
Driver blocks in between pairs of Body blocks. Open and configure each
Constraint/Driver’s dialog box to restrict or drive the relative motion
between the two respective bodies of each constrained/driven pair.

Select, connect, and configure Actuator and Sensor blocks. From the Sensors
& Actuators library, drag and drop the Actuator and Sensor blocks that you
need to impart and sense motion. Reconfigure Body, Joint, and
Constraint/Driver blocks to accept Sensor and Actuator connections.
Connect Sensor and Actuator blocks. Specify control signals (applied
forces/torques or motions) through Actuators and measure motions through
Sensors.

Actuator and Sensor blocks connect SimMechanics blocks to
non-SimMechanics Simulink blocks. You cannot connect SimMechanics
blocks to regular Simulink blocks otherwise. Actuator blocks take inport
signals from normal Simulink blocks (for example, from the Simulink
Sources library) to actuate motion. Sensor block output ports generate
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Simulink signals that you can feed to normal Simulink blocks (for example,

from the Simulink Sinks library).

In the most straightforward model of a machine, you apply forces/torques
and initial conditions, then start the simulation in the Forward Dynamics
mode to obtain the resulting motions. In the Kinematics and Inverse

Dynamics modes, you apply motions to all independent degrees of freedom.

With these modes, you can find the forces/torques needed to produce these
imposed motions.

7 Encapsulate subsystems. Systems made from SimMechanics blocks can
function as subsystems of larger models, like subsystems in normal
Simulink models. You can connect an entire SimMechanics model as a
subsystem to a larger model by using the Connection Port block in the
Utilities library.

Essential Steps to Configure and Run a Model

After you’ve built your model as a connected block diagram, you need to decide

how you want to run your machine, configure global settings, and set up
visualization.

¢ SimMechanics offers four analysis modes for running a machine model. The

mode you will probably use most often, at least at first, is Forward Dynamics.

But a more complete analysis of a machine makes use of the Kinematics,
Inverse Dynamics, and Trimming modes as well. You can create multiple
versions of the model, each with the same underlying machine, but
connected to Sensors and Actuators and configured differently for different
modes.

® You can also use the powerful visualization and animation features of
SimMechanics. You can visualize your machine as you build it or after you
are finished but before you start the simulation, as a tool for debugging the
machine geometry. You can also animate the machine model as you
simulate.

® Choose the analysis mode and configuring visualization, as well as other
important settings, in the Mechanical Environment Settings dialog box.
You might also need to reconfigure the Simulink Simulation Parameters
dialog for SimMechanics models. See “A Four Bar Mechanism” on page 2-36
for an example.

2-9
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The tutorials of this chapter introduce you to most of these steps.

Caution You might want to make modifications to these tutorial models. To
avoid errors, be sure

® Not to attempt connecting Simulink signal lines directly to SimMechanics
blocks other than Actuators and Sensors

® To keep the collocation of the Body coordinate system origins on either side
of each assembled Joint to within assembly tolerances

You should save multiple versions of models as you try different analysis
modes and configurations.

The first tutorial in the next section shows you how to configure the most basic
blocks in any model: Ground, Body, and a Joint, in order to create a simple
pendulum model. The second tutorial explains how to visualize and animate
the pendulum.
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Building a Simple Pendulum

In this first tutorial, you drag, drop, and configure the most basic blocks needed
for any mechanical model, as well as add some sensors to measure motion. The
tutorial guides you through these aspects of model-building:

® “The World Coordinate System and Gravity” on page 2-12

® “Configuring a Ground Block” on page 2-12

¢ “Configuring a Body Block” on page 2-14

¢ “Configuring a Joint Block” on page 2-20

® “Adding Sensors and Starting the Simulation” on page 2-24

The end result is a model of a simple pendulum. The pendulum is a swinging

steel rod. We strongly recommend that users work through this tutorial first
before moving on to “Visualizing a Simple Pendulum” on page 2-30.

A Simple Pendulum: A Swinging Steel Rod

Opening the SimMechanics Block Library

Following one of the ways described earlier in the “Viewing the Blocks” section
in this chapter, open the SimMechanics library. Then from the SimMechanics
library, open a new, empty Simulink model window.

2-11
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The World Coordinate System and Gravity

Before you configure a Ground block, you need to understand SimMechanics’
internally defined fixed or “absolute” coordinate system (CS) called World. The
World CS sits at rest in the inertial reference frame also called World. The
World CS has an origin (0,0,0) and a triad of right-handed, orthogonal
coordinate axes.

The default World coordinate axes are defined so that

+x points right
+y points up (gravity in —y direction)

+z points out of the screen, in three dimensions

The vertical direction or up-and-down is determined by the gravity vector
direction (acceleration g) relative to the World axes. Gravity is a background
property of a model that you can reset before starting a simulation, but does
not dynamically change during a simulation.

See “Mechanical Environment Settings Dialog Box” on page 5-7 for displaying
global mechanical properties of SimMechanics models.

Configuring a Ground Block

World serves as the single absolute CS that defines all other CSs. But you can
create additional ground points at rest in World, at positions other than the
World origin, by using Ground blocks. Ground blocks, representing ground
points, play a dynamical role in machine models. They function as immobile
bodies.
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Minimum Ground Block Every machine model must have at least one
Ground block.

Ground  GND CS at (3,4,5)

(3,4,5)51_;:_

S
z< x

(0,0,0)

Figure 2-1: A Ground Point Relative to World

Steps to Configuring the Ground Block
Now place a fixed ground point at position (3,4,5) in the World CS:

1 In the SimMechanics library, open the Bodies library.

2 Drag and drop a Ground block from the Bodies library into the model
window. Close the Bodies library.

3 Open the Ground block dialog box. Into the Grounded point/Location [x y
z] field, enter the vector [3 4 5]. Click OK to close the dialog box.
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Properties of Grounds
At every ground point, a Grounded CS is automatically created:

® The origin of each Grounded CS is the ground point itself.

® The Grounded CS axes are always fixed to be parallel to the World CS axes,
as shown in Figure 2-1.

® You can use these Grounded CSs in setting up later Body CSs.

Configuring a Body Block

While you need at least one Ground block to make a machine model, a real
machine consists of one or more rigid bodies. So you need to translate the
components of a real machine into block representations. This section explains
how you use a Body block to represent each rigid body in your machine:

® “Characteristics of a Body Block” on page 2-15

® “Properties of the Simple Pendulum Body” on page 2-15

¢ “Configuring the Body Dialog” on page 2-17

Although the body is the most complicated component of a machine,

SimMechanics does not use the full geometric shape and mass distribution of
the body. SimMechanics only needs certain mass properties and simplified
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geometric information about the body’s center of gravity, its orientation, and
the coordinate systems attached to the body.

Setting these properties sets the body’s initial conditions of motion, if you do
nothing else to the Body block or its connected Joints before simulating.

Characteristics of a Body Block

The main characteristics of a Body block are its mass properties, its position
and orientation in space, and its attached Body coordinate systems (CSs).

The mass properties include the mass and inertia tensor. The mass is a real,
positive scalar. The inertia tensor is a real, symmetric 3-by-3 matrix. It does
not have to be diagonal.

The position of the body’s center of gravity (CG) and orientation relative to some
coordinate system axes indicate where the body is and how it is rotated. These
are the body’s initial conditions during construction of the model and remain
so when you start the simulation, unless you change them before starting.

The attached Body CSs (their origins and coordinate axes) are fixed rigidly in
the body and move with it. The minimum CS set is one, the CS at the CG (the
CG CS), with its CS origin at the center of gravity of the body. The default CS
set is three, the CG CS and two additional CSs called CS1 and CS2 for
connecting to Joints on either side. See the next section, “Configuring a Joint
Block” on page 2-20.

Beyond the minimum CS at the CG, you can attach as many Body CSs on one
Body as you want. You need a separate CS for each connected Joint,
Constraint, or Driver and for each attached Actuator and Sensor.

The inertia tensor components are interpreted in the CG CS, setting the
orientation of the body relative to the CG CS axes. The orientation of the CG
CS axes relative to the World axes then determines the absolute initial
orientation of the body. Since the CG CS axes remain rigidly fixed in the body
during the simulation, this relative orientation of the CG CS axes and the body
does not change during motion. The inertia tensor components in the CG CS
also do not change. As the body rotates in inertial space, however, the CG CS
axes rotate with it, measured with respect to the absolute World axes.

Properties of the Simple Pendulum Body

The simple pendulum is a uniform, cylindrical steel rod of length 1 meter and
diameter 2 cm. The initial condition is the rod lying parallel to the negative
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x-axis, horizontal in the gravity field. One end of the rod, the fixed pivot for the
rod to swing, is located at the ground point (3,4,5). Its coordinate system is
called CS1. The center of gravity and the origin of the CG CS is the geometric
center of the rod. Take the CG CS axes to be parallel to the World axes as you
set up the pendulum.

Uniform steel has density p = 7.93 gm/cc (grams per cubic centimeter). In the
CG CS here, the inertia tensor I is diagonal, and I, controls the swinging about
the z-axis, in the x-y plane. The inertia tensor is always evaluated with the
origin of coordinates at the CG. For a rod of length L =1 m and radius r = 1 cm,
the mass m = pnrzL = 2490 gm (grams), and the inertia tensor I reads

- }
1250 0 0
Ixx 0 O L2 ]
0 Iyy 0| =] o ™ o | =| 0 208xl10 0
0 01 12 6
2z 9 0 0  2.08x10
0 0 mL”
. 12_

in gm-cm? (gram-centimeters?). The x-axis is the cylinder’s symmetry axis.
Thus Iy = 1,,.

The mass and geometric properties of the body are summarized in the following
table and depicted in Figure 2-2 on page 2-17.

Body Data for the Simple Pendulum

Property Value
Mass (gm) 2490
Inertia tensor (kg-mz) [1.25e-4 0 0;
0 0.208 0;
0 0 0.208]
CG Position/Origin (m) [ 2.5 4 5]
CS1 Origin (m) [ 345]
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Configuring the Body Dialog
Take the steps to configuring a Body block dialog box in several stages.

Ground

—
-‘"--\-.__\_\_ L
T

|

-ﬂﬁxhhi hY
~— ‘,,fiwx I Gravity
£ ~. -
T~ ~._|Y (3,4,5)
/ Body ""f'f—z’;E‘m:'f >y
CG at 2% %
(2-5}435) :"
CSl1 at
(3,4,5)

Figure 2-2: Equivalent Ellipsoid of Simple Pendulum with Coordinate Systems
Adding the Body Block. To start working with the Body block:

1 Open the Bodies library in the SimMechanics library.

2 Drag and drop a Body block into your model window.

3 Open the Body block dialog box. Note the two main areas you need to
configure:

= Mass properties — These are the mass and inertia tensor.

= Body coordinate systems — These are the details about the position and
orientation of the Body CSs.

Note To apply your dialog entries at any time, click Apply. To close a dialog,
click OK.
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Configuring the Body’s Mass Properties. Now enter the body’s mass and inertia
tensor:

1 Use the data from the table “Body Data for the Simple Pendulum” on page
2-16.

In the Mass field, enter 2490 and change the units to g (grams).

2 In the Inertia tensor field, enter [1.25e-4 0 0; 0 0.208 0; 0 0 0.208]
and leave the default units as kg-m?.

Configuring Body Coordinate Systems (Position). Configure the translational position
of the body and its Body CS origins in space:

1 Use the data from table “Body Data for the Simple Pendulum” on page 2-16,
and work on the Position pane. Vectors are assumed translated from the
World origin and oriented to the World axes.

2 Note the three default CSs in the Body dialog box. The CS at the CG is
necessary for any Body, and you will connect CS1 to the Ground with a Joint
shortly.

Delete CS2 by selecting its line in the Body CS list and clicking the Delete
button in the Body CS controls.

You have two already existing CSs not on this Body that you can use to
specify the positions of the Body CS origins that are on this Body:

= Preexisting World origin at [0 0 0]
= The Adjoining CS on the neighboring body, in this case the Grounded CS
origin at [3 4 5]
3 Specify the CG and CS1 origins relative to World:

a In the pull-down menu under Translated from origin of, choose World
for both CSs: CG and CS1.

b Under Origin position vector, specify the position of the origin of each
CS, translated from the World origin:

[3 4 5] for CS1
[2.5 4 5] for CG
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~ Body coordinate systerns

4 Select a CS relative to whose coordinate axes the components of the vectors
in the last step are measured. You choose these CS axes in the Components
in axes of menu. Select World for both CSs. Leave the units as m (meters).

Configuring Body Coordinate Systems (Orientation). Configure the rotational
orientation of the body and its Body CS axes in space:

1 Work on the Orientation pane. The default orientation for all CS axes is
parallel to World. The sign of all rotations is determined by the right-hand
rule.

In Figure 2-2, the CS1 and CG axes are oriented parallel to the World axes,
so the CS1 and CG axes need no rotation.

2 For both CSs, set the Relative to coordinate system menu to World.

3 For CG and CS1, leave the Orientation vector at default [0 0 0] and the
Specified using convention at default Euler X-Y-Z. Close the Body dialog.

Position  Orientation | o= 2] #]
Showy Felative ta Specified using
port | Port side [Mame| Orientation wvector nits coordinate system convention

- et *lcs oo deg ¥ |[woRLD > |[Euerevz =]
7 et *lcst oo deg v |[woRLD > |[Euerevz =]

Configuring a Joint Block

A machine is made up of Bodies with geometric and mass information. But
Bodies carry no information of how they move. The possible directions of
motion that a Body can take are called its degrees of freedom (DoF's), and this
section explains how you represent these DoF's by Joint blocks:

* “How to Connect a Joint Between Two Bodies” on page 2-21

® “Revolute Joint for the Simple Pendulum” on page 2-21
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DoFs Are Relative In SimMechanics, DoFs and the Joints that represent
them are relative DoF's. That is, DoF's represent the possible motions between
one body and another. So a DoF is defined by a pair of bodies, and you must
connect every Joint to two and only two Bodies.

One (but not both) of the members of such a pair of Bodies can be a Ground.
The other member Body of such a pair then has its motion defined relative to a
fixed ground point. This fixed ground point does not have to be the same as the
World origin. A machine can have many such Ground-Body pairs and must
have at least one.

How to Connect a Joint Between Two Bodies

You represent relative motion of bodies with respect to one another by
connecting their Body blocks with Joints. You can connect a Body to one or
more Joints.

A Joint block is always connected to a specific point on the Body on either side
of the Joint. The specific point for anchoring a Joint on a Body is the origin of
a Body CS, and a Joint is therefore connected on one side to one Body at a Body
CS origin, and on the other side to the other Body at a Body CS origin.

Usually a Body is connected to a Joint on either side, so the default you saw
earlier in this tutorial for Body CSs in the Body dialog box is three Body CSs:
the CS at the center of gravity (CG) and two other CSs (CS1 and CS2). But a
Body at the end of a Body—dJoint—...—Body chain is connected to only one
Joint.

Revolute Joint for the Simple Pendulum

In spite of the complexity of the concepts implicit in a Joint, the actual
configuration of a Joint block is fairly simple. Here you insert and configure one
revolute Joint block between the Ground and Body blocks you’ve already put
into the model window.
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Figure 2-3: Simple Pendulum Connected to Ground via Revolute

Configuring the Revolute Joint Block. The geometry of the Joint connection is shown
in Figure 2-3. The ground point at (3,4,5) and the CS1 at (3,4,5) are actually the
same point in space, but have been separated in the figure for clarity. The
revolute rotation axis is along the +z direction:

1 Open the Joints library in the block library.
2 Drag and drop a Revolute block into your model window.

3 Rotate the Revolute block so that you can connect the base (B) side of the
Joint to the Ground block and the follower (F) side of the Joint to the Body
block. Make the two connections.
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4 Open the Revolute dialog box. In the Parameters area, on the Axes pane,

configure the rotation axis to the World z-axis:

a Enter [0 0 1] under Axis of rotation [x y z]

b Leave the Reference csys at WORLD

C

Ignore the Advanced tab

Note several important things:

= Under Connection parameters, the Current base is located at
GND@Ground, which is the Grounded CS associated with the Ground block

located at (3,4,5) in World.

= Under Connection parameters, the Current follower is located at
CS1@Body, which is the CS1 on Body1 located at (3,4,5) in World.

= This Joint’s directionality runs from Ground to Body along the +z axis.

5 Close the Revolute dialog box.

<} Block Parameters : Revolute - o] x|

rDescription

Represents one rotational degree of freedom. The Follower (F) Body
rotates relative to the Base (B) Body about a single rotational axis
going through collocated Body coordinate system arigins. Sensor and
actuator ports can he added. Base-Follower sequence and axis
direction determine sign of forward motion.

r Connection parameters
Current hase: GHND@Ground
Current follower: C51@Body
Murmber of sensor f actuator ports: lﬂ

 Parameters
Axes | Advanced |

Axis of rotation
Mame | Primitive [y 2] Reference cays
R1 | Revolute |[001] WORLD |
oK Cancel Help | Apply |
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Congratulations — you have now finished the simplest possible model of a
machine: a connected block diagram of Ground—dJoint—Body. Your model
window should look like this.
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Adding Sensors and Starting the Simulation

To measure the motion of the pendulum as it swings, you need to hook one or
more Simulink Scope blocks to your model. The special library of Actuators and
Sensor blocks gives you the means to input and output Simulink signals to and
from SimMechanics models. Sensors allow you to watch the mechanical motion
once you start the simulation, as the following explain:

¢ “Connecting and Configuring Pendulum Sensors”

¢ “Configuring Simulation Parameters and Mechanical Environment
Settings” on page 2-26

® “Starting and Interpreting the Motion” on page 2-27

Connecting and Configuring Pendulum Sensors
In this example, you measure the angular motion of the revolute joint:

1 In the block library, open the Sensors and Actuators library. Drag and drop
two Joint Sensor blocks into your model window.



Building a Simple Pendulum

2 Open the Revolute block. Change Number of sensor/actuator ports from 0
to 2 using the spinner menu. Two open connector ports O appear on either
side of Revolute. Close Revolute.

3 Connect these connector ports to the connector ports on the Joint Sensor
blocks. The open connector ports change to solid .

4 Open the Simulink Library Browser. From the Sinks library, drag and drop
a Scope block and an XY Graph block into your model window. From the
Signal Routing library, drag and drop a Mux block as well. Connect the
Simulink outports > on the Joint Sensor blocks to the Scope and XY Graph
blocks as shown.

r'f'.spnn =|o] x|

Fle Edt View Simulation Format Tools Help
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=

XY Graph
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The lines from the outports > to the Scope and XY Graph blocks are normal
Simulink signal lines and can be branched. You cannot branch the lines
connecting SimMechanics blocks to each another at the round connector
ports e.
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5 Open Joint Sensor. Select only the Angle check box. Open Joint Sensorl.
Select only the Angular velocity check box. Leave the other defaults. Close
both Sensor blocks.

6 Save your model for future reference as spen.mdl.

You now need to configure the global parameters of your model before you can
run it.

Configuring Simulation Parameters and Mechanical Environment Settings

The Simulation Parameters dialog box is a standard feature of Simulink.
Reset its entries for this model to obtain more accurate simulation results.

1 Inthe Simulink menu bar, open the Simulation menu and click Simulation
parameters to open the Simulation Parameters dialog.

2 Change Relative tolerance to 1e-6 and Absolute tolerance to 1e-4.

If you want the simulation to stop after a finite time, change Stop time to a
finite number of seconds. The pendulum period is approximately 1.6 sec.

3 Close the Simulation Parameters dialog box.

A special feature of SimMechanics models is the Mechanical Environment
Settings dialog box.

1 In the Simulink menu bar, open the Simulation menu and click
Mechanical environment to open the Mechanical Environment Settings
dialog.

Note the default Gravity vector and units: [0 -9.81 0] m/ 32, which points
in the —y direction, as shown in Figure 2-2 on page 2-17. Gravitational
acceleration g = 9.81 m/s2.

2 Close the Mechanical Environment Settings dialog.
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<) Mechanical Environment S¢
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Description

Defines simulation properies for the mechanical componerts in this model.

Parameters Constraints Linearization I Wisualization

Analysiz type: type of solution representing machine's motion.
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Gravity vector and units: I[D -8.81 0] Im,rs= |
Analysis type: IFDrward dynamics j
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Angular assemhbly tolerance: I1 e-3 Irad j
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Starting and Interpreting the Motion
You can now start your simulation and watch the pendulum motion via the

Scope and XY Graph blocks:

1 Open the XY Graph block dialog box. Set the following parameters.

Parameter Value
X-min 0
X-max 200
y-min -500
y-max 500

Leave Sample time at default and close the dialog.
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2 Open the Scope block and start the model. The XY Graph opens
automatically when you start the simulation.

3 View the full motion of both angle and angular velocity (in degrees and
degrees per second, respectively) as functions of time in Scope. Click
Autoscale if the motion is not fully visible.

L Autoscale

Angle and Angular Velocity of the Simple Pendulum as Functions of Time

The motion is periodic but not simple harmonic (sinusoidal), because the
amplitude of the swing is so large (180 degrees from one turning point to the
other). Note that the zero of angle is the initial horizontal angle, not the
vertical. The zeros of motion are always the initial conditions.

The XY Graph shows the angle versus angular velocity, with no explicit time
axis. These two variables trace out a figure similar to an ellipse, because of the
conservation of total energy E:

1 ,(d6\2 choy = B o=
QJ(E) +mgh(l1—-sinb) = E = const

where J = I,, + mL?/4 is the inertial moment of the rod about its pivot point
(not the center of gravity). The two terms on the left side of this equation are
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the kinetic and potential energies, respectively. The coordinate-velocity space
is the phase space of the system.
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Phase Space Plot of Simple Pendulum Motion: Angular Velocity Versus Angle

The directionality of the Revolute Joint assumes that the rotation axis lies in
the +z direction. Looking at the pendulum from the front, follow Figure 2-1 on
page 2-13, Figure 2-2 on page 2-17, and Figure 2-3 on page 2-22. Positive
angular motion from this perspective is counterclockwise, following the
right-hand rule.

The next tutorial walks you through visualizing and animating this same
simple pendulum model.
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In this section, you learn how to view the swinging pendulum rod of the model
introduced in the last section using the SimMechanics visualization tools. Use
your saved spen.mdl model, or use the mech_spen model in the Demos library.

SimMechanics has two independent tools for visualizing a machine. One is an
internal tool based on MATLAB Handle Graphics. The other is an optional
virtual reality scene and requires the Virtual Reality Toolbox 3.0 to be
installed. Both tools display a machine by representing its bodies. The bodies
can be displayed in two ways, by equivalent ellipsoids and by closed surfaces
(convex hulls) enveloping the bodies’ coordinate systems.

Note You can find more on visualizing and animating machine models in
“Visualizing and Animating Machines” on page 6-1

This section explains how to visualize your pendulum with either tool, using
either body representation. You can view the pendulum before you start and,
separately, choose to animate it during simulation as well:

® “Representing the Bodies” on page 2-31

® “Visualizing with Handle Graphics” on page 2-32
® “Visualizing with Virtual Reality” on page 2-34

Starting Visualization
The first step is to open the Mechanical Environment Settings dialog box
from your model window:

1 On the Simulink menu bar, open the Simulation menu and open the
Mechanical environment entry. The Mechanical Environment Settings
dialog box appears. In the lower half, click the Visualization tab at the
right.

2 To view the pendulum in its static initial condition, select the Draw
machine in initial state check box.

To animate the pendulum visualization while the simulation is running,
select the Animate machine during simulation check box as well.
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3 Leave the dialog open until the end of this section, as you will need to
configure additional settings.

~) Mechanical Environment Si - o] x|

Description

Defines simulation propetties for the mechanical componerts in this model.

Parameters | Constraints | Linearization Wizualization I

To draw a geometrical reprezentation of the machine, select "Draw
machine in initial state " To animate the machine wwhile running the
model, select "Animate maching during simulation.”

Drawy maching using: IMATLAEI Graphics j
[

Represent bodies as: |C0nvex hulls

[~ Draw maching in initial state

Lpciate machine: IWhen diagram changes j

[T &nimste machine during simulstion

(]34 | Cancel | Help | Apply

Representing the Bodies

The information that you use to specify body properties in a SimMechanics
model is enough to represent each body in certain special, simplified ways.
SimMechanics does not have the information about the bodies needed to
represent their full geometries.

Equivalent Ellipsoids

A rigid body has a unique equivalent ellipsoid, a homogeneous solid ellipsoid
with the same inertia tensor. For more about this representation figure for
rigid bodies, see “Rendering Body Shapes in SimMechanics” on page 6-5.

Because the rod has an axis of symmetry, the x-axis in this case, two of its three
generalized radii are equal: ay = a,. The generalized radii of the equivalent
ellipsoid are ay = v5/3(L/2) =0.646 m and ay =a, = J5(r/2) =1.12 cm.
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Convex Hulls

Every Body has at least one Body coordinate system (CS) at the CG. A Body
also has one or more extra Body CSs for the attached Joints, as well as possible
Actuators and Sensors. Each Body CS has an origin point, and the collection of
all these points, in general, defines a volume in space. The minimum
outward-bending surface enclosing such a volume is the convex hull of the Body
CSs, and this is the alternative way that SimMechanics has to represent a
body.

You created the pendulum body with only two Body CSs, CG and CS1. The
convex hull for the pendulum rod is thus the minimum connecting figure, a line
joining the two Body CS origins.

Choosing the Body Representation

You can choose which displayed representation of the pendulum rod or any
machine bodies SimMechanics uses, by configuring the Visualization tab in
the Mechanical Environment Settings dialog box. In the Represent bodies
as menu, choose Convex hulls or Equivalent ellipsoids.

Continue to keep the Mechanical Environment Settings dialog box open.

Visualizing with Handle Graphics

The Handle Graphics-based visualization tool is built into SimMechanics. To
choose this visualization mode:

1 Use the Draw machine using menu to pick MATLAB Graphics.
2 Now click Apply or OK to apply all your visualization choices.
3 A MATLAB Handle Graphics window appears.

The displayed figure depends on the body representation you choose. The
convex hull appears.
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Handle Graphics Window for Pendulum Rod (Convex Hull)

You can change the viewpoint and manipulate the image using standard
Handle Graphics techniques. Consult “Viewing Machines with Handle
Graphics” on page 6-10 as well. Experiment with the special SimMechanics
menu’s settings to see different ways of displaying the pendulum.

When you start the model, the body in the graphics window moves in step with
the simulation.
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Visualizing with Virtual Reality

Note This optional feature requires the Virtual Reality Toolbox to be
installed on your MATLAB path.

To choose the Virtual Reality-based visualization tool, follow the previous steps
for Handle Graphics, but change the Draw machine using choice:

1 Open the Mechanical Environment Settings dialog box and click the
Visualization tab.

2 Use the Draw machine using menu to select Virtual Reality Toolbox.
3 Now click Apply or OK to reapply your visualization choices.

4 A virtual reality viewer, displaying a virtual scene, appears.

The displayed figure depends on the body representation you choose. The
equivalent ellipsoid looks like this.
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The next tutorial shows how to create, run, and visualize a model for a more
complex machine, a four bar mechanism. To configure Ground, Body, and Joint
blocks now means repeating and expanding upon the three blocks of the first
two tutorials.
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In this tutorial, you build a model of a planar four bar mechanism and practice
using some of the important SimMechanics features:

® “Configuring the Mechanical Environment Settings” on page 2-38
¢ “Setting Up the Block Diagram” on page 2-40

® “Configuring the Ground and Joint Blocks” on page 2-43

¢ “Configuring the Body Blocks” on page 2-47

® “Sensing Motion and Running the Model” on page 2-52

You are urged to go through “Building a Simple Pendulum” on page 2-11 and
“Visualizing a Simple Pendulum” on page 2-30 before proceeding with this
section.

The machine consists of three moving bars of homogeneous steel, two
connected at one end each to ground points and a third cross bar connecting the
first two. The base acts as an immobile fourth bar, with a Ground at each end.
The machine forms a single closed loop, and its motion is confined to two
dimensions.

The elementary parts of the machine are the bodies, while the revolute joints
are the idealized rotational degrees of freedom (DoFs) at each body-to-body
contact point. The bodies and the joints expressing the bodies’ relative motions
must be translated into corresponding SimMechanics blocks. If you want, you
can add elaborations such as Constraints, Drivers, Sensors, and Actuators to
this essential block diagram.
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Figure 2-4: Four Bar Mechanism

Counting the Degrees of Freedom

The three moving bars are constrained to move in a plane. So each bar has two
translational and one rotational DoF's, and the total number of machine DoF's,
before counting constraints, is 3*(2+1) = 9.

Because the motion of the bars is constrained, however, not all of these nine
DoF's are independent:

¢ In two dimensions, each connection of a body with another body or with a
ground point imposes two restrictions (one for each coordinate direction).

Such a restriction effectively eliminates one of the two body ends as
independently moving points, because its motion is determined by the next
body’s end.
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® There are four such body-body or body-ground connections and therefore
eight restrictions implicit in the machine’s geometry.

The eight restrictions on the nine apparent DoF's reduce the DoF's to one, 9 — 8
= 1. There are four rotational DoFs between bars or between bars and grounds.
But three of these are dependent. Specifying the state of one rotational DoF
fully specifies the other three.

Configuring the Mechanical Environment Settings

Open a new blank model window from the SimMechanics library. First you
need to set the global mechanical environment.

On the model window toolbar, open the Simulation menu and click the
Mechanical environment entry. The Mechanical Environment Settings
dialog box appears.

<) Mechanical Environmenit j-' - ||:||£|
|'Descriptinn

Defines simulation properties for the mechanical components in this model,

Parameter s Constrairts I Linearization Wisualization

Analysiz type: type of salution representing machine's motian.

Tolerances: maximum permissible mizalignment of machine's joints.

Gravity vector and units: I[D -9.81 0] Imez j

Analysiz type: IFDrward dynamics j

Lineat azzembly tolerance: |1 e-3 Im j

Angular assembly tolerance: |1 e-3 Irad j
(0] 4 | Cancel | Help | Apply |
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The Mechanical Environment Settings Dialog Box Panes
Click the four tabs in succession to expose each pane.

Pane Function

Parameters Controls general settings for mechanical simulations

Constraints Sets constraint tolerances and how constraints are
interpreted

Linearization Controls how SimMechanics models are linearized with
Simulink

Visualization Configures the visualization tools

Note some important features of this dialog box:

= The Gravity vector field specifies the magnitude and direction of
gravitational acceleration and sets the vertical or up-down direction.

= The Linear and Angular assembly tolerance fields are also set here.
Change Angular assembly tolerance to 1e-3 deg (degrees). (See “Setting
Assembly Tolerances” on page 5-5 and “Parameters Pane” on page 5-7.)

= Leave the other defaults, except Visualization.

Setting the Visualization Pane

Visualization We recommend opening one of the visualization tools before
building a model. With it, you can keep track of your model components and
how they are connected, as well as correct mistakes.

To visualize the bodies as you build the machine, go to the Visualization pane
of Mechanical Environment Settings:

1 In the Draw machine using menu, select either Virtual Reality Toolbox
or MATLAB Graphics (Handle Graphics).

Leave Represent bodies as in default the Equivalent ellipsoids.
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2 Select the Draw machine in initial state check box. Leave the Update
machine menu as default When diagram changes to see bodies appear and
change in the visualized scene as you add and change them in the model.

If you want to animate the simulation later when you run the model, select
the Animate machine during simulation check box as well.

3 Click OK or Apply.

If you chose Handle Graphics, an empty Handle Graphics window opens. If
you chose virtual reality, an empty virtual world appears in a virtual reality
viewer.

Either visualization window becomes populated with bodies as you add
them to the model.

If you open visualization after the model is built, the finished machine
appears.

Setting Up the Block Diagram

In this set of steps, you create Bodies, position them, connect them with Joints,
then configure the Body and Joint properties. The Body dialog boxes give you
many ways to represent the same machine in the same physical state. This
section explains one way.

Alternative, equivalent ways of configuring Bodies are discussed in “Body
Coordinate Systems” on page 4-10.

MAT-File Data Entry

The geometric and mass properties you need to specify for the Grounds and
Bodies in this model are listed in the tables of the following two sections,
“Configuring the Ground and Joint Blocks” on page 2-43 and “Configuring the
Body Blocks” on page 2-47.

Instead of typing the numerical values of these properties into the dialog boxes,
you can load the variable set you need into the workspace by entering

load fourbar_data
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at the MATLAB command line. The variable name for each property is given
in the tables. Just enter the appropriate variable names in the appropriate
fields as you come to them in the dialog boxes.

Block Diagram Setup

Begin assembling the model with these steps:

1 In the block library, open the Bodies library. Drag and drop two Ground
blocks and three Body blocks into the new model window. Close the Bodies
library.

2 From the Joints library, drag and drop four Revolute blocks into the model
window.

3 Rotate and connect the blocks in the pattern shown in the following figure
or with an equivalent block diagram topology.

Use the block names shown in this figure for later consistency.
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Figure 2-5: Connected Ground, Body, and Joint Blocks for Four Bar Model

Block diagram topology. The topology of the block diagram is the connectivity of
its elements. The elements are the Bodies and Grounds, connected by the
Joints. Unlike the model of “Building a Simple Pendulum” on page 2-11, the
four bar mechanism is a closed-loop machine. The two Ground blocks represent
points on the same absolute, immobile body, and they close the loop of blocks.
The simple pendulum has only one ground and does not close its block
connections.

To maintain consistent Body motion direction, make sure the Body coordinate
system (CS) port [H pairs on each Body follow the sequence CS1-CS2, CS1-CS2,
etc., for each bar, moving from Ground_1 to Ground_2, from right to left, as
shown. To make the Joints consistent with the Body motion, the base-follower
pairs B-F, B-F, etc., should follow the same right-to-left sequence.
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Configuring the Ground and Joint Blocks

Now configure the Ground blocks with the data from the following table.
Grounded coordinate systems (CSs) are automatically created.

Geometry of the Four Bar Base
This table summarizes the geometry of ground points.

Geometric Properties of the Four Bar Grounds

Property Value MAT-File Variable
Ground_1 point (m) [ 0.434 0 0.04 ] gpoint_1
Ground_2 point (m) [-0.433 0 0.04 ] gpoint_2

The base of the mechanism has these measurements:

¢ The base is horizontal, with length 86.7 cm.

¢ Ground_1 represents the ground point 43.3 cm to the right of the World CS
origin.

® Ground_2 represents the ground point 43.4 cm to the left of the World CS
origin.

¢ The bottom revolutes are 4 cm above the origin (x-z) plane.

Configuring the Ground Blocks

To represent ground points on the immobile base, configure the Ground blocks.
Use the variable names if you've loaded fourbar_data.mat into your
workspace:

1 Open Ground_1 and enter [ 0.434 0 0.04 ] or gpoint_1 in the Location
field.

2 Open Ground_2 and enter [-0.433 0 0.04 ] or gpoint_2 in the Location
field.

3 Leave both pull-down menus for units at default m (meters).
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<} Block Parameters : Gro? - o] x|

rDescription
Grounds one side of a Joint to fixed location in the YWorld
coordinate system.

rGrounded point

Location [xv 2] {relative to the YWarld coordinate systerm)

ji0.4330.04 0] [rm |

Ok | Cancel Help | Apply

rDescription
Grounds one side of a Joint to fixed location in the YWorld
coordinate system.

rGrounded point

Location [xv 2] {relative to the YWarld coordinate systerm)

F0.434 0.04 ) [rm |

Ok | Cancel | Help | Apply

Configuring the Revolute Joints

The three nongrounded bars move in the plane of your screen (x-y plane), so you
need to make all the Revolute axes the z-axis (out of the screen):

1 Open each Revolute’s dialog box in turn. In its Parameters area, note on the
Axes pane that the z-axis is the default: Axis of rotation [x y z] is set to [0
0 1] in each, relative to Reference csys WORLD. Leave these defaults.

A Revolute block contains only one primitive joint, a single revolute DoF. So
the Primitive is automatically Revolute. Its name internal to the block is

R1.

2 Leave these Revolute joint block defaults and ignore the Advanced tab.

The Body CS and base-follower joint directionality should be set up as shown
in the block diagram of Figure 2-5 on page 2-42. In the Connection
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parameters area, the default Joint directionality for each Revolute
automatically follows the right-to-left sequence of Grounded and Body CSs:
® Revolutel: Base to follower: GND@Gound_1 to CS1@Bar1

® Revolute2: Base to follower: CS2@Bar1 to CS1@Bar2

® Revolute3: Base to follower: CS2@Bar2 to CS1@Bar3

¢ Revolute4: Base to follower: CS2@Bar3 to GND@Ground_2

In this Joint directionality convention:

® At each Joint, the leftward Body moves relative to the rightward Body.
¢ The rotation axis points in the +z direction (out of the screen).

¢ Looking at the mechanism from the front in Figure 2-4 on page 2-37, the
positive rotational sense is counterclockwise. All Joint Sensor and Actuator
data are interpreted in this sense.
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<} Block Parameters : Reyolutel - o] x|

rDescription

Follower (F) body rotates relative to Base (B) body about single
rotational axis gaoing through collocated Body CS arigins. Sensor and
actuator ports can he added. Base-Follower direction sets sign of joint
data.

r Connection parameters
Current base: GHD@Ground_1
Current follower: C51@Barl
Mumber of sensor f actuator ports: lﬂ

- Parameters

Axes | Advanced |

Axis of rotation
Mame | Primitive [y 2] Reference cays
R1 | Revolute |[001] WORLD |
oK Cancel Help | Apply |

<} Block Parameters : Reyolute2 - o] x|

rDescription

Follower (F) body rotates relative to Base (B) body about single
rotational axis gaoing through collocated Body CS arigins. Sensor and
actuator ports can he added. Base-Follower direction sets sign of joint
data.

r Connection parameters
Current hase: C52@Barl
Current follower: C51@Bar?
Mumber of sensor f actuator ports: lﬂ

- Parameters

Axes | Advanced |

Axis of rotation

Mame | Primitive [y 2] Reference cays
R1 | Revolute |[001] WORLD |
oK Cancel Help | Apply |
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<} Block Parameters : Revolute3™ - o] x|

rDescription

Follower (F) body rotates relative to Base (B) body about single
rotational axis gaoing through collocated Body CS arigins. Sensor and
actuator ports can he added. Base-Follower direction sets sign of joint
data.

r Connection parameters
Current hase: C32@Bar?
Current follower: C51@Bard
Mumber of sensor f actuator ports: lﬂ

- Parameters

Axes | Advanced |

Axis of rotation

Mame | Primitive [y 2] Reference cays
R1 | Revolute |[001] WORLD |
Ok | Cancel | Help | Apply |

<} Block Parameters : Revoluted ™ - o] x|

rDescription

Follower (F) body rotates relative to Base (B) body about single
rotational axis gaoing through collocated Body CS arigins. Sensor and
actuator ports can he added. Base-Follower direction sets sign of joint
data.

r Connection parameters
Current hase: C32@Bard
Current follower: GHD@Ground_2
Mumber of sensor f actuator ports: lﬂ

- Parameters

Axes | Advanced |

Axis of rotation

Mame | Primitive [y 2] Reference cays
R1 | Revolute |[001] WORLD |
Ok | Cancel | Help | Apply |

Configuring the Body Blocks
Setting the Body properties is similar for each bar, but with different
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® Mass properties

® Lengths and orientations

e Center of gravity (CG) positions
¢ Body coordinate systems (CSs)

to be entered into the dialog boxes.

In contrast to the first tutorial, where you specify Body CS properties with
respect to the absolute World CS, in this tutorial, you specify Body CS origins
on the bars in relative coordinates, displacing Bar1’s CS1 relative to Ground_1,
Bar2’s CS1 relative to Barl, and so on, around the machine loop. You can refer
the definition of a Body CS to three types of coordinate systems:

* To World

® To the other Body CSs on the same Body

® To the Adjoining CS (the coordinate system on a neighboring body or ground
directly connected by a Joint to the selected Body CS).

The components of the displacement vectors for each Body CS origin continue
to be oriented with respect to the World axes. The rotation of each Body’s CG
CS axes is also with respect to the World axes, in the Euler X-Y-Z convention.

The following three tables summarize the body properties for the three bars.

Bar1 Mass and Body CS Data (MKS Units)

Property Value Variable Name
Mass 5.357 m_1
Inertia tensor [1.07e-3 0 0; 0 0.143 0; inertia_1
0 0 0.143]
CG Origin [0.03 0.282 0] from CS1 cg_1
CS1 Origin [0 0 0] from ADJOINING cs1_1
CS2 Origin [0.063 0.597 0] from CS1 cs2_1
CG Orientation [0 0 83.1] from WORLD orientcg_1
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Bar2 Mass and Body CS Data (MKS Units)

Property Value Variable Name
Mass 9.028 m_2
Inertia tensor [1.8e-3 0 0; 0 0.678 0; inertia 2
0 0 0.678]
CG Origin [-0.427 0.242 0] from CS1 cg 2
CS1 Origin [0 0 0] from ADJOINING cs1 2
CS2 Origin [-0.87 0.493 0] from CS1 cs2 2
CG Orientation [0 0 29.5] from WORLD orientcg 2

Bar3 Mass and Body CS Data (MKS Units)

Property Value Variable Name
Mass 0.991 m_3
Inertia tensor [2.06e-4 0 0; O 1.1e-3 0; inertia_3
00 1.1e-3]
CG Origin [-0.027 -0.048 0] from CS1 cg_3
CS1 Origin [0 0 0] from ADJOINING cs1 3
CS2 Origin [0 0 0] from ADJOINING cs2 3
CG Orientation [0 0 60] from WORLD orientcg_3

Configuring the Bodies

Here are the common steps for configuring the Body dialogs of all three bars.
See the three preceding tables for Body dialog box mass property (mass and

inertia tensor) entries. The units are MKS: lengths in meters (m), masses in

kilograms (kg), and inertia tensors in kilogram-meters? (kg-m?).

1 Open all three Body dialogs for each bar. Enter the mass properties for each
from the tables in the Mass and Inertia tensor fields.

2 Now work in the Body coordinate systems area, the Position pane:
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a Set the Components in axes of menu, for each Body CS on each bar, to
WORLD.

b Leave units as default m (meters).

3 Set the Body CS properties for each Body CS on each bar from the data of
the preceding tables:

a Enter the Body CS origin position data for CG, CS1, and CS2 on each bar
from the tables or from the corresponding MAT-file variables.

b Set the Translated from origin of menu entries for each Body CS on
each bar according to the “from” information in the tables.

4 Select the Orientation pane by clicking its tab:

a Enter the Orientation vector for the CG on each bar from the tables or
from the corresponding MAT-files variables.

b Choose WORLD for Relative to coordinate system in each case.

¢ Leave the other fields in their default values.

<} Block Parameters : Barl = o] x|

Description

Represents a user-defined rigid body. Body defined by mass m, ineria tensor |, and coordinate ariging
and axes for center of gravity (CG) and other user-specified Body coardinate systems. This dialog sets
Body initial position and orientation, unless Bady andior connected Joints are actuated separately.

~Mass properties
Mass Inertia

. o ok 07e- ;00 ; . o -
5357 ki [1.07e-300;00.1430,000.143] k*rm®
*with respectto the CG (Center of Gravity) Body coordinate system

~Body coardinate systems

Fosition | Orientation * X2 F
Show Qrigin position Translated from | Components in
port | Port side |Mame vectar [xy 2] Units arigin of axes of
r Left >l [0.03 0,282 0] m  [|C51 » [I"WORLD -
~ Left >llcst joon m * ADJOINING  » [I'WORLD -
F  |Rioht *llcss (0063 0597 0] m > |jcs > ||WORLD i
0K Cancel Help Apply
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<} Block Parameters : Bar2

=10 x|

Description

Represents a user-defined rigid body. Body defined by mass m, inetia tensor |, and coordinate ariging
and axes for center of gravity {CG) and other user-specified Body coardinate systems. This dialog sets
Body initial position and orientation, unless Bady andior connected Joints are actuated separately.

~Mass properties

Mass Inertia

9.028 o =] |nsesooposreouoosrs [arm= =]

*with respectto the CG (Center of Gravity) Body coordinate system

~Body coardinate systems

Position Orientation

|3

Show Qrigin position Translated from | Components in

port | Port side |Mame vectar [xy 2] Units arigin of axes of

r teft Tlcs  |po427-024200 > ljcst TIWORLD ¥

~ Left >llcst joon * ADJOINING  » [I'WORLD -

|Right ¥lcsz |fo.87-04830] m | S TIWORLD ¥
oK Cancel Help | Apply |

<} Block Parameters : Bar3

=10 x|

Description

Represents a user-defined rigid body. Body defined by mass m, ineria tensor |, and coordinate ariging
and axes for center of gravity {CG) and other user-specified Body coardinate systems. This dialog sets
Body initial position and orientation, unless Baody andior connected Joints are actuated separately.

~Mass properties

Mass Inertia

0.991 o =] Jizosesvoorieannotiesy [karm= =]

*with respectto the CG (Center of Gravity) Body coordinate system

~Body coardinate systems

Position Orientation

|3
Show Qrigin position Translated from | Components in
port | Port side |Mame vectar [xy 2] Units arigin of axes of
r tet ~lcs  |po.027-0.0480) m > ljcst TIWORLD ¥
~ Left >llcst joon m * ADJOINING  » [I'WORLD -
~ Right |-z 1000 m * ADJOINING  » [I'WORLD -
0K Cancel Help Apply
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The front view of the four bar mechanism, rendered as equivalent ellipsoids in
the virtual reality scene, looks like this.

Bar 3 Bar 2 Bar 1

World CS axes

Sensing Motion and Running the Model

You finish building your model by setting initial conditions and inserting
Sensors.

Before you start a machine simulation, you need to set its kinematic state or
initial conditions. These include positions/angles and linear/angular velocities.
This information, the machine’s initial kinematic state, is discussed further in
“Modeling Sensors” on page 4-60.
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You can sense motion in any model in two basic ways: sensing bodies or sensing
joints. Here you sense Joint motion, using Joint Sensor blocks and feeding their
Simulink signal outputs to Scope blocks.

Caution Because they are immobile, ground points cannot be moved, nor do
they have any motion to measure.

Therefore you cannot connect Ground blocks to Actuator or Sensor blocks.

Connecting the Joint Sensors
To sense the motion of the Revolute2 and Revolute3 blocks:

1 From the Sensors & Actuators library, drag and drop two Joint Sensor
blocks into the model window. Drag Joint Sensor next to Revolute2 and
Joint Sensorl next to Revolute3.

2 Before you can attach a Joint Sensor block to a Revolute block, you need to
create a new open round connector port O on the Revolute. Open Revolute2’s
dialog box:

a In the Connection parameters area in the middle, adjust the spinner
menu Number of sensor/actuator ports to the value 1. Click OK.

A new connector port O appears on Revolute2.

b Connect this connector port to the open round connector port on Joint
Sensor.

3 Now repeat the same steps with Revolute3:

a Create one new connector port O on Revolute 3.

b Connect this port to Joint Sensorl.

4 Be sure to connect the outports > of the Sensor blocks to non-SimMechanics
blocks. These ports are normal Simulink signals.

Graphical Plot of Joint Motion with a Scope Block

Here you can view the Joint Sensor measurements of Revolute2 and
Revolute3’s motions using a Scope block from the Simulink Sinks library:
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1 Open the Simulink Library Browser. From the Sinks library, drag and drop
a Scope block into your model window in between Joint Sensor and Joint
Sensorl blocks. Rename the Scope block “Angle”.

2 Open the Angle block. In this scope window’s toolbar, open the Parameters
box. Under Axes, reset Number of axes to 2. Click OK. A second inport >
appears on the Angle block.

3 Expand the scope window for ease of viewing.

4 Connect the Joint Sensor and Joint Sensorl block outports > to the Angle
block inports >.
5 Open Joint Sensor and Joint Sensorl:

a Note in the Measurements area, that Connected to primitive is set to
R1 in both blocks, indicating the first and only primitive revolute inside
Revolute2 and Revolute3 to which each Sensor can be connected.

b Select the Angle check box to measure just the angle. Leave the units in
default as deg (degrees). The Simulink line will contain one scalar.

Your completed model should look similar to the mech_four_bar demo model.
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Caution Sensor and Actuator blocks are the only blocks that can connect
SimMechanics blocks to non-SimMechanics Simulink blocks.
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Configuring and Running the Simulation
Now take the final steps to prepare and start the model:

1 In the model window Simulation menu, select Simulation parameters:
a In the Solver pane, change Absolute tolerance to 1e-6.

b Leave the other defaults and click OK.

2 Now run the model by clicking Start Simulation in the Simulink toolbar.
The four bar machine will fall under the influence of gravity.

Note some features of the simulation:

¢ In this example, the machine starts from rest, with the initial velocities at
zero. So the initial state of the four bar machine is just the geometric state
that you set up in “Setting Up the Block Diagram” on page 2-40.

¢ The assembly at first falls over to the right, and the Revolute2 angle
decreases.

e Bar3 turns all the way around, and Bar2 and Barl turn back to the left. The
Revolute2 angle reverses direction. Revolute3 sweeps through a complete
turn. Angles are mapped to the interval (-180°,+180°] and exhibit
discontinuities.

® The motion repeats periodically, as there is no friction.
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Animation

If you leave your visualization tool open at the time you start the simulation
and select the Animate machine during simulation check box in the
Visualization pane of the Mechanical Environment Settings dialog box, the
visualized machine moves in step with the simulation.

You can now compare the animated motion with the Scope plots of the
Revolute2 and Revolute3 angles.
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Understanding
Mechanical Concepts

This chapter reviews the mathematical representations that SimMechanics uses to implement
position, orientation, and motion. Special technical terms associated with mechanics and with
SimMechanics are also summarized. Beginning users might find this chapter useful review after
constructing a few simple machines. This chapter assumes some familiarity with vector algebra and
analysis.

Representing Body Positions and Review of translational and rotational motion and how
Orientations (p. 3-2) SimMechanics implements kinematic states
Summary of Technical Vocabulary Summary of special terms used in SimMechanics with

(p. 3-11) links to the Glossary
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Representing Body Positions and Orientations

Machines are composed of bodies, which have relative degrees of freedom
(DoF's). Bodies have positions, orientations, mass properties, and sets of Body
coordinate systems. Joints represent the motions of the bodies.

* A machine’s geometry consists of its static body features before starting a
simulation: positions, orientations, and Body coordinate systems.

® A machine’s kinematics consists of the positions/orientations and their
derivatives of all degrees of freedom (DoFs) of all bodies at any instant
during the machine’s motion.

The full description of a machine’s motion includes not only its kinematics, but
specification of its observers, who define reference frames (RFs) and coordinate
systems (CSs) for measuring the machine motion.

This section summarizes observer coordinate systems, measuring body motion,
forms of body rotation, and how SimMechanics represents the state of a
machine’s motion.

¢ “Reference Frames and Coordinate Systems”

® “Relating Moving Coordinate Systems” on page 3-3

® “Observing Motion in Different Coordinate Systems” on page 3-4
® “Observing a Translating, Rotating Rigid Body” on page 3-6

¢ “How SimMechanics Represents Body Rotations” on page 3-7

¢ “Kinematics and the Machine State” on page 3-9

All vectors and tensors (matrices), unless otherwise noted, are Cartesian with
three and nine, respectively, spatial components measured by orthogonal or
rectangular coordinate axes. This section assumes basic knowledge of vector
algebra and analysis. The books of Goldstein [2] and Murray, Li, and Sastry
[11] present coordinate transformations, rotations, and rigid body kinematics
in detail.

Reference Frames and Coordinate Systems

The reference frame of an observer is an observer’s state of motion, which has
to be measured by other observers. The Newtonian dynamics of a mechanical
system take their simplest form in the special set of inertial RFs, the set of all
frames moving at uniform velocities with respect to one another. Within an RF,
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you can pick any point as a coordinate system origin, then set up Cartesian
(orthogonal) axes there.

SimMechanics uses a master inertial RF called World. A CS origin and axis
triad are also defined in World. World can mean either the RF or the CS,
although in most contexts, the coordinate system is indicated. For
SimMechanics, World defines absolute rest and a universal coordinate origin
and axes independent of any bodies and grounds in a machine.

Relating Moving Coordinate Systems

Add a second CS, called O, whose origin is translating with respect to the World
origin and whose axes are rotating with respect to the World axes.

A vector C represents the origin of O. Its head is at the O origin and its tail at
the World origin. The O origin translates as some arbitrary function of time

C().
The orthogonal unit vectors {u(x), u(y), u(z)} define the coordinate axes of O.

¢ This set is tilted with respect to the World coordinate axes X, Y, Z, with unit
vectors {e(x), e(y), e(z)}. The tilt changes with time.
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® You can express the set {u(x), u(y), u(z)} as a linear combination of the basis
{e(x), e(y), e(z)} in terms of nine coefficients:

u(x) = Ryy e(x) + Ryy e(y) + R,y e(z)
u(y) = Ryy e(x) + Ryy e(y) + R,y e(z)
u(z) = Ry, e(x) + Ryz e(y) + R, e(z)

These are relationships between vectors (not vector components) and are
independent of reference frame and coordinate system.

® You obtain the components of the u’s in World by taking the scalar products
of the u’s with the ¢’s:
Uy(x) = Ryy , uy(X) = Ryy , u,(x) = Ry
uy(y) = Ryy , uy(y) = Ryy , u,(y) = R,y
uy(z) = Ry, , uy(2z) = Ry, , u,(z) = Ry,
The time-dependent R coefficients represent the orientation of the u’s with
respect to the e’s. You can replace the labels (x,y,z) by (1,2,3).

® The components of any vector v measured in World are e(i)*v. Represent
them by a column vector vyy,.q. The components of v in O are u(i)*v.
Represent them by a column vector vg. The two sets of components are
related by the matrix transformation vyy,q = R* vo. The coefficients R form
a matrix whose columns are the components of the u’s in World:

R11 R12 R13 Rxx Rxy Rxz
= R21 R22 R23 Ryx Ryy Ryz
R31 R32 R3 Rzx Rzy Rzz

The orthogonality and unit length of the u’s guarantee that R is an
orthogonal rotation matrix satisfying RRT = RTR =I, the identity matrix. RT
is the transpose of R (switch rows and columns). Thus R = RT.

® Rotations always follow the right-hand rule.

Observing Motion in Different Coordinate Systems

To the two observer CSs, World and O, now add a third point p(¢) in arbitrary
motion. p could represent a point mass, the center of gravity (CG) of an
extended body, or a point fixed in a moving rigid body, for example. The two
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observers describe the motion of this point in different ways, related to one
another by time-dependent World-to-O coordinate transformations.

p(®)

The motion of p is given by its column vector components in some CS. The
components of p as measured in World are a column vector py,1q and,
measured in O, are a column vector pg. The two descriptions are related by

Pworld®) = Cyoria(®) + R@) * po(t)

Thus the motion as measured by pw,r4, Wwhen transformed and observed by O
as po, has additional time dependence arising from C(¢) and R(?).

Relating Velocities Observed in Different Coordinate Systems

Differentiate once with respect to time the relationship between pyy,,14 and po.
The result relates the velocity of p as measured by O to the velocity as
measured in World.

deorld/dt = dCWorld/dt +R* dpo/dt + dR/dt * Po

The section “The Angular Velocity of a Body from Its Rotation Matrix” on
page 3-6 explains how to express the third term in a simpler form.
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Observing a Translating, Rotating Rigid Body

You can obtain the special case essential for rigid body motion by letting O be
the CG CS of an extended rigid body (the origin of O at the CG itself) and letting
b be a point somewhere in the same body. Since a moving body in general
accelerates both translationally and rotationally, O is noninertial.

The rotation matrix R now describes the rotational motion of the body in terms
of the rotation of the CG CS axes with respect to the World axes. Furthermore,
b is now fixed in the body itself and does not move in O. All of its motion as seen
by World is due to R and C, and dbp/dt = 0.

The Angular Velocity of a Body from Its Rotation Matrix

Continue to identify O with the body CG CS and b as a point fixed in the body.
The vector components of b are observed by World as by,1q and by the CG CS
as bp,gy- In the body, the point is immobile: dbg,q,/dt = 0. Its velocity observed
by World is composed of the translational and rotational motion of the entire
rigid body.

deorld/dt = dCWorld/dt + dR/dt * bBOdy
Because RR" =1, (dR/dt)*R™ + R*(dR"/dt) = 0. Insert RTR =1 to the left of by,

and define an antisymmetric matrix Q = +(dR/dt)*RT = —R*(dRY/dt). Its
components are Q) = +2J- EijkO;-

B 0 -, o,
Q=lo, 0 -
—0y 0x 0

where o is the body’s angular velocity in the World CS.
deorld/dt = dCWorld/dt +Q*R* bBody
= dCyor1g/dt + Oworig X (R * bpegy)

The motion of bg,qy, decomposes into the motion of the body’s CG plus the
angular rotation of bp,qy relative to the CG, all measured in World.

The permutation symbol &ijk is +1 if ijk is an even permutation (123 or any
cyclic permutation thereof) and —1 if {j% is an odd permutation (321 or any
cyclic permutation thereof). It changes sign upon switching any two indices and
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vanishes if any two indices are equal. The components of the cross (vector)
product ¢ = a X b of two vectors a and b are ¢; = ij €ijkajbk.

How SimMechanics Represents Body Rotations

You state a body’s orientation by specifying the tilt of its center of gravity
coordinate system (CG CS) axes relative to some other set of axes, either the
CG CS axes of another body or the World CS axes. Zero tilt is represented by
“no rotation” or the rotational identity.

A general rotation of a body in three dimensions has three independent degrees
of freedom. There are many ways to represent these degrees of freedom.
SimMechanics implements the following forms in the Body and related Body
Actuator, Body Sensor, and RotationMatrix2VR blocks.

The Axis-Angle Form

The angle-axis form of a rotation is the most basic representation. Specify a
rotation axis (unit vector) n, then rotate by the right-hand rule about that axis
by some angle 0.

The axis-angle form is usually written as a 4-vector: [n, n,, n, 6]. Of the four
numbers, three are independent, because n*n = nx2 + ny2 + nz2 = 1. That is, n
specifies only a direction, not a length.

To describe continuous rotation in time, you treat n and 6 as functions of time.

The Rotation Matrix Form

The axis-angle form defines the rotation matrix R written in the exponential
form R = exp(0 n*J), where the JE are real, antisymmetric matrices, and n*J =
Ny 1y Ny J? + ng J2. The rotation matrix R is orthogonal: RRT=RTR=1.

The J matrices are related to the antisymmetric permutation symbol Ejjk-
(Pixc = eiji

The formal exponential for R is reduced to a closed form by the Rodrigues
identity:

R = exp(0 n*J) = I + (n*J) sin + (n*J)? (1 — cosh)

where [ is the identity matrix and n*J is given by

3-7
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0 -, ny
% _
n*J = n, 0 -n,
—ny ny 0

The inverse of R is identical to its transpose RT. But you can also obtain the
inverse by replacing 6 with —8 or by reversing the direction of n.

To describe continuous rotation in time, you treat n and 6 as functions of time.

The Euler Angle Form

An alternative representation for R is to rotate, in succession, about three
independent axes, by three independent Euler angles. The full rotation R
relative to World composes by multiplying the matrices successively on the left:

R = R3*Ry*R;

The full rotation R relative to the body composes by multiplying the matrices
successively on the right:

R =R{*Ry*Rs

One Euler angle convention is to rotate about one body coordinate axis (which
rotates the other two); then rotate about a second body coordinate axis (rotated
from its original direction); and lastly, rotate about the first body coordinate
axis again (which axis has been rotated into a new direction by the second
rotation). The rotation axis sequence Z-X-Z is the most common, using ¢, 0, v
as the first, second, and third angles, respectively: R = R1(¢)*Ro(0)*R3(y).

A two-dimensional rotation about a fixed axis requires one angle. For example,
rotating the x- and y-axes about the z-axis by ¢ is represented by

cos¢ —sin¢ 0
R(9) = sing cos¢ O
0 0 1

To describe continuous rotation in time, you treat the Euler angles as functions
of time.
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The Quaternion Form

A quaternion represents a three-dimensional rotation as a four-component row
vector of unit length:

q = [ny,*sin(6/2) ny*sin(9/2) ny*sin(6/2) cos(0/2)1 =Ilqy qgl,

with g*q = qy*qy, + qs2 = 1. The vector n = (n,, ny,nz) is a three-component unit
vector, n*n = 1, and represents the axis of rotation. The rotation angle about
that axis is 0. To describe continuous rotation in time, you treat n and 6 as
functions of time.

You can construct the equivalent rotation matrix R from q.
R = (2942 - DI + 294Qy + 2qyqy "
Qy)ik = Zj &ijk(@v);

The term qVqVT is the outer product of q,, with itself, the 3-by-3 matrix of q5,
components multiplied by each other.

Kinematics and the Machine State

Kinematics is the description of a machine’s motion without regard to forces,
torques, and the mass properties of bodies. Since accelerations are proportional
to forces and torques, you only need the positions and their first derivatives
(velocities) to integrate a machine’s motion, if you know the mass properties of
the bodies and the forces and torques applied to them.

The state of motion of a mechanical system is the set of the instantaneous
positions and orientations of all its bodies and their first derivatives (linear and
angular velocities). In SimMechanics, body positions/orientations are relative:
one body’s state is specified relative to its neighbors. The absolute positions and
velocities of the bodies’ states are determined via the machine’s connection to
one or more grounds. These grounds are at rest in World, although they do not
have to coincide with the World origin.

The relative position and orientation of a body with respect to a neighbor make
up a degree of freedom (DoF). The fundamental DoF's are translational (one
body sliding relative to another along a prismatic axis) and rotational (one body
rotating relative to another about a revolute axis, or one body pivoting relative
to another about a spherical pivot point).

3-9
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SimMechanics represents DoF's by Joint blocks connected between Body
blocks. Bodies without Joints have no DoF's in SimMechanics and acquire DoF's
only by having Joints connected to them. SimMechanics represents the
machine state by the positions (prismatics), angles (revolutes or sphericals),
and linear/angular velocities of all Joints.

Refer to “Counting Degrees of Freedom” on page 4-67 and the command
reference for mech_stateVectorMgr for identification of DoF's in SimMechanics
and elaboration of the machine state.
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Summary of Technical Vocabulary

This section summarizes the special technical terms used in this guide and
points to more detailed definitions in the “Glossary”:

¢ “Topology of Mechanical Systems”

® “Coordinate Systems and Reference Frames”

* “Bodies and Mass Properties” on page 3-12

¢ “Joints, Constraints, and Drivers” on page 3-12

® “Sensors and Actuators” on page 3-12

Topology of Mechanical Systems

Mechanical systems can be characterized by their topology, or the global
connectivity of their elements. A SimMechanics model’s elements are the Body
blocks, and the connections are the Joints. A complex system in general is a
mixture of these basic topological classes: open systems, with subclasses of open
chains and open trees, and closed systems, which contain loops.

Coordinate Systems and Reference Frames
SimMechanics uses a family of coordinate systems (CSs) and reference frames
(RFs).

SimMechanics has a built-in inertial RF called World. Ground blocks
representing ground points are at rest in this RF. You can think of ground
points as fixed points on an infinitely large, immobile body. The World RF
defines the state of “no motion” or “at rest” for all systems.

World is also a CS, with an origin and axes:

+x points right
+y points up (gravity in —y direction)

+z points out of the screen, in three dimensions

Users can define additional Local CSs:

® Grounded CSs attached to Ground blocks at rest in the World RF but
displaced from the World CS origin

® Body CSs fixed in the system’s rigid bodies and moving rigidly with the
bodies

3-11
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In general bodies accelerate as they move. So Body CSs in general live in
noninertial RFs.

Bodies and Mass Properties

A body is defined in SimMechanics by its mass properties (mass and inertia
tensor), its position and orientation, and user-specified attached Body CSs.
Bodies carry no DoFs.

A body’s position is specified by the position of its center of gravity (CG). The
CG point is also the origin of the body’s CG coordinate system (CG CS). The

orientation of the CG CS axes is user-specified. The body also can have other
Body CSs attached to it. The origins and axes of these CSs are user-specified.

The orientation of the body itself is set by the components of its inertia tensor,
which are always interpreted in the body’s CG CS axes. The absolute
orientation of the body is then determined by the orientation of that body’s CG
CS axes with respect to World.

Joints, Constraints, and Drivers

Joints carry the degrees of freedom (DoFs) of a system in SimMechanics, but
none of its mass or inertia. DoF's represent the possible relative motions
between pairs of bodies and are specified by translational and rotational axes.
Joints can be primitive or composite, constrained or unconstrained, and
assembled or disassembled.

Constraints are functional relationships between the DoFs that hold regardless
of applied forces/torques. Drivers are special constraints that specify the
motion of DoF's as user-defined functions of time.

Sensors and Actuators

Sensors measure the motions of any body or joint, while actuators specify the
motion of a body or joint in various ways. Important specialized Actuator blocks
are the following:

¢ The Body Actuator, which applies forces to a body

® The Joint Actuator, which applies forces or motions to a joint

® The Joint Initial Condition Actuator, which sets a joint’s initial conditions

¢ The Joint Stiction Actuator, which applies static and kinetic friction to joint
motion



Modeling Mechanical

Systems

SimMechanics gives you a complete set of block libraries for modeling machine parts and connecting
them into a Simulink block diagram.

Modeling Machines (p. 4-2)
Modeling Bodies (p. 4-8)
Modeling Joints (p. 4-17)
Modeling Constraints and Drivers
(p. 4-34)

Modeling Actuators (p. 4-40)

Modeling Force Elements (p. 4-55)
Modeling Sensors (p. 4-60)

Checking Model Validity (p. 4-64)

How to create a valid mechanical model with
SimMechanics and Simulink

How to represent the machine environment and the mass
and geometric properties of bodies

How to represent degrees of freedom as joints

How to represent time-independent and time-dependent
constraints on relative body motions

How to apply forces, motions, and initial conditions to
machines

How to represent internal forces within machines

How to measure motions and forces in machines and
create feedback loops to model internal forces

Special restrictions and requirements for block diagram
models with SimMechanics blocks

Refer to the “Understanding Mechanical Concepts” chapter to review kinematics. If you need more
information on rigid body mechanics, consult the physics and engineering literature, beginning with
the “Selected Bibliography.” Classic engineering mechanics texts include Goodman and Warner [3],
[4] and Meriam [10]. The books of Goldstein [2] and José and Saletan [6] are more theoretically

oriented.
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Modeling Machines

In SimMechanics the term machine refers to a dynamic system that includes
at least one rigid body. SimMechanics provides a library of Simulink blocks
that allow you to create Simulink models of machines.

About SimMechanics Models

A SimMechanics model consists of a block diagram comprising one or more
schematics, each of which is a set of connected blocks representing a machine.
For example, the following model contains two schematics.

B4
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Xy Graph

Comparison to Other Simulink Models

A SimMechanics model differs significantly from other Simulink models in how
it represents a machine. An ordinary Simulink model represents the
mathematics of a machine’s motion, i.e., the algebraic and differential
equations that predict the machine’s future state from its present state. The
mathematical model enables Simulink to simulate the machine. By contrast, a
SimMechanics model represents the physical structure of a machine, the
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geometric and kinematic relationships of its component bodies. SimMechanics
converts this structural representation to an internal, equivalent
mathematical model. This saves you the time and effort of developing the
mathematical model yourself.

Creating a SimMechanics Model

You create a SimMechanics model in much the same way you create any other
Simulink model. First, you open a Simulink model window. Then you drag
instances of SimMechanics and other Simulink blocks from the Simulink block
libraries into the window and draw lines to interconnect the blocks (see
“Connecting SimMechanics Blocks” on page 4-3).

The SimMechanics block library provides the following blocks specifically for
modeling machines:

® Body blocks that represent a machine’s components and the machine’s
immobile environment, or ground (see “Modeling Bodies” on page 4-8)

¢ Joint blocks that represent the degrees of freedom of one body relative to
another body or to a point on ground (see “Modeling Joints” on page 4-17)

¢ Constraint and Driver blocks that restrict motions of or impose motions on
bodies relative to one another (see “Modeling Constraints and Drivers” on
page 4-34)

¢ Initial condition blocks that specify the initial state of the machine

¢ Actuator blocks that specify forces or motions applied to joints and bodies

¢ Sensor blocks that output the forces and motions of joints and blocks

You can use blocks from other Simulink libraries in SimMechanics models. For
example, you can connect the output of SimMechanics Sensor blocks to Scope
blocks from the Simulink Sinks library to display the forces and motions of
your model’s bodies and joints. Similarly, you can connect blocks from the
Simulink Sources library to SimMechanics Driver blocks to specify relative
motions of your machine’s bodies.

Connecting SimMechanics Blocks

In general, you connect SimMechanics blocks in the same way you connect
other Simulink blocks: by drawing lines between them. Significant differences
exist, however, between connecting standard Simulink blocks and connecting
SimMechanics blocks. The following sections discuss these differences.

4-3



4 Modeling Mechanical Systems

4-4

Connection Lines

The lines that you draw between standard Simulink blocks, called signal lines,
represent inputs to and outputs from the mathematical functions represented
by the blocks. By contrast, the lines that you draw between SimMechanics
blocks, called connection lines, represent physical connections and
relationships among the bodies represented by the blocks.

You can draw connection lines only between specialized connection ports
available only on SimMechanics blocks (see next section) and you cannot
branch existing connection lines. Connection lines appear as solid black when
connected and as dashed red lines when either end is unconnected.

Connector Ports

Standard Simulink blocks have input and output ports. By contrast, most
SimMechanics blocks contain only specialized connector ports that permit you
to draw connection lines among SimMechanics blocks. SimMechanics
connector ports are of two types: Body CS ports and general-purpose ports.
Body CS ports appear on Body and Ground blocks and define connection points
on a body or ground. Each is associated with a local coordinate system whose
origin specifies the location of the associated connection point on the body.

st My copdd— BOdY &) port

Body

General-purpose connector ports appear on Joint, Constraint, Driver, Sensor,
and Actuator blocks. They permit you to connect Joints to Bodies and connect
Sensors and Actuators to Joints, Constraints, and Drivers. General-purpose
connector ports appear as circles on the block icon. The circle is unfilled if the
port is unconnected and filled if the port is connected.

General-purpose SimMechanics
B ':F Fl—

connector port

o

Rewolute



Modeling Machines

Interfacing SimMechanics Blocks to Simulink Blocks

SimMechanics Actuator blocks (see “Modeling Actuators” on page 4-40) contain
standard Simulink input ports. Thus, you can connect standard Simulink
blocks to a SimMechanics model via Actuator blocks. Similarly, SimMechanics
Sensor blocks contain output ports (see “Modeling Sensors” on page 4-60).
Thus, you can connect a SimMechanics model to Simulink blocks via Sensor

blocks.
o ool sz g

Frismatic Body
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&
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Setting SimMechanics Block Properties at the
Command Line

You cannot use the Simulink set_paramand get_param commands to set or get
SimMechanics block parameters. Instead, you must set block parameters via
the block dialog boxes. You can open the dialogs by double-clicking the block,
or by right-clicking the block and selecting Open block.

Creating SimMechanics Subsystems

Large, complex block diagram models are often hard to analyze. Enclosing
functionally-related groups of blocks in subsystems alleviates this difficulty
and facilitates reuse of block groups in different models.

You can create subsystems containing SimMechanics blocks that you can
connect to other SimMechanics blocks. You do this in two ways:
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® Automatically
® Manually

The Simulink User’s Guide explains more about creating subsystems.
Creating a Subsystem Automatically

To create a SimMechanics subsystem automatically:

1 Create the subsystem block diagram in your model window, leaving
unconnected ports for external connections.

Joint Actuator Frism atic

2 Group-select the subsystem block diagram.

3 Select the Make subsystem command from the Simulink window.

The command replaces the block diagram with a Subsystem block containing
the selected block diagram. The command also creates and connects
SimMechanics Connection Port blocks for the ports that you left unconnected
in the block diagram. The Connection Port blocks in turn create connector port
icons on the subsystem icon, enabling you to connect external SimMechanics

blocks to the new subsystem.

"'” ®'_'
Connd I —Z >
Constant EonnZ (e \-& o # iz
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Creating a Subsystem Manually

Sometimes you need to make a subsystem configured differently from an
automatically created one. To create a SimMechanics subsystem manually:

1 Drag a Subsystem block into your model window.
2 Open the Subsystem block.

3 Create the subsystem block diagram in the subsystem window.

»

Drag a Connection Port block from the SimMechanics Utilities library into
the subsystem window for each port that you want to be available externally.

5 Connect the external connector ports to the Connection Port blocks.

Creating Custom SimMechanics Blocks with Masks

You can create your own SimMechanics blocks from subsystems, for example,
a spring-loaded Joint block or a sphere Body block. To do this, create a block
diagram that implements the functionality of your custom block, enclose the
diagram as a subsystem, and add a mask (i.e., user interface) to the subsystem.
To facilitate sharing your custom blocks across models or with other users,
create a Simulink block library and add these masked subsystem blocks to the
library. The Simulink User’s Guide explains how to create custom blocks with
masks.
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Modeling Bodies

The basic components of any machine are its constituent rigid bodies. In
SimMechanics, the term body refers to any point or spatially extended object
that has mass. SimMechanics bodies, unlike physical bodies, do not have
degrees of freedom. The SimMechanics Bodies library contains two blocks for
representing bodies in a Simulink model:

e Ground

Models a point on an ideal body of infinite mass and extent that serves as a
fixed environment for machines (see “Modeling Grounds” following).

* Body

Models rigid bodies of finite mass and extent, including their attached body
coordinate systems (see “Modeling Finite Rigid Bodies” on page 4-9).

Modeling Grounds

In SimMechanics, ground refers to a body of infinite mass and size that acts
both as a reference frame at rest for a machine as a whole and as a fixed base
for attaching machine components, e.g., the factory floor on which a robot
stands. SimMechanics Ground blocks enable you to represent points on ground
in your model. This in turn enables you to specify the degrees of freedom that
your system has relative to its environment. You do this by connecting Joint
blocks representing the degrees of freedom between the Body blocks
representing parts of your machine and the Ground blocks representing
ground points.

Each Ground block has a single connector port to which you can connect a Joint
block that can in turn be connected to a single Body block. Each Ground block
therefore allows you to represent the degrees of freedom between a single part
of your model and its environment. If you want to specify the motion of other

parts of your machine relative to the environment, you must create additional
Ground blocks.

Note To be valid, a SimMechanics model must contain at least one Ground
block connected to a Body block via a Joint block.
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The World Coordinate System

SimMechanics uses an internal master coordinate system and reference frame
called World. All grounds are at rest in World. The connector port of each
Ground block defines a grounded coordinate system called GND. The GND
coordinate system’s axes are parallel to World. By default the origin of the
grounded coordinate system coincides with the origin of the World coordinate
system. The Grounded point field of a Ground block’s dialog box allows you to
move the origin of GND to some other point in the World coordinate system, as
in the example “Building a Simple Pendulum” on page 2-11.

Ground  GND CS at (3,4,5)

(3,4,5)
7z / T X

(0,0,0)

The GND coordinate system allows you to specify the positions and motions of
parts of your machine relative to fixed points in the environment.

Modeling Finite Rigid Bodies
The SimMechanics Body block enables you to model rigid bodies of finite mass

and extent. A body is rigid if its internal parts cannot move relative to one
another.

About Body Blocks
A Body block allows you to specify the following attributes of a rigid body.
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Mass Properties. These include the body’s mass, which determines its response
to translational forces, and its inertia tensor, which determines its response to
rotational torques.

Body Coordinate Systems. By default a Body block defines three local coordinate
systems, one associated with a body’s center of gravity, labeled CG, and two
others, labeled CS1 and CS2, respectively, associated with two other points on
the body that you can specify. You can create additional body coordinate
systems or delete them as necessary.

A Body block’s dialog box allows you to specify a Body CS’s origin (see “Setting
a Body CS’s Position” on page 4-12) and orientation (see “Setting a Body CS’s
Orientation” on page 4-14). The origin and orientation of a body’s CG CS
specify the body’s initial location and orientation. The origins of the other body
coordinate systems specify the initial locations of other points on the body.

SimMechanics allows flexibility in specifying the origins and orientations of a
body’s coordinate systems. You can specify the origin and orientation of a body
CS relative to

® The World CS
® Any other CS on the same body

® The Adjoining CS, the CS on the neighboring body or ground directly
connected by a Joint, Constraint, or Driver to the selected Body CS you are
configuring.

This simplifies creation and maintenance of models. The only limitation is that
you must specify the origin and location of at least one of a model’s body
coordinate systems relative to the World CS.

Connector Ports. Any Body CS can display a Body CS Port. A Body CS Port
allows you to attach Joints, Actuators, and Sensors to a Body. By default, a
Body’s CS1 and CS2 coordinate systems each display a Body CS port. You can

display a port for any other Body coordinate system as well, including a Body’s
CG CS.

Creating a Body Block
To create a Body block:

1 Drag a Body block icon from the SimMechanics Bodies library and drop it
into your model window.
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Open the Body block’s dialog box.

Enter the mass of the body you are modeling in the Mass field.

Select the units of mass from the adjacent units list.

Enter a 3-by-3 matrix representing the body’s inertia tensor relative to its
center of gravity coordinate system (CG CS) origin and axes in the Inertia
field (see “Determining Inertia Tensors for Common Shapes” on page 4-11).

Enter the initial positions of the body’s CG and coordinate systems in the

Position pane.

Enter the initial orientation of the body’s CG and coordinate systems in the

Orientation pane.

Click OK or Apply.

Determining Inertia Tensors for Common Shapes

The following table enables you to determine the inertia tensors for some

common shapes. For each shape of mass m, the table lists the shape’s principal
moments of inertia, I, Iy, and I3, along the x-, y-, and z-axes of the shape’s CG
coordinate system.

Shape I lo I3
Thin rod of length L aligned %mL2 ilamL2 0
along z

Sphere of radius R %mR2 %mR2 %mR2
Cylinder of radius R and im(R2 + %hZ) im(RZ + %hZ) émR2

height A aligned along z

Rectangular parallelopiped
of sides a, b, and ¢ aligned
along x, v, z, respectively

ém(b2 +cz)

1—12m(az2 + bz)

4-11
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Shape Iy Iy Ig

Cone of base radius R and %m(§R2 + h2) im(ng + hz) l%mR2
height A along z

Ellipsoid of semiaxes a, b, %m(b2 + cz) %m(a,2 + 02) %m(a2 + b2)
and c aligned along x, y, z,

respectively

The corresponding inertia tensor for the shape is the following 3-by-3 matrix:

1,00
01,0
001,

Working with Body Coordinate Systems

Every body in SimMechanics has body coordinate systems (CSs) attached to it.
The location of a body CS is the origin of that CS. The CS’s rectangular x-y-z
coordinate axes are rotated at some orientation. You set up body CS origins and
orientations before running your model. But once the bodies start to move, the
origins and orientations of a body’s CSs remain fixed in the body. The elements
of a body’s inertia tensor also remain fixed in the body.

The sections “Managing Body Coordinate Systems” on page 4-15 and “Creating
Body CS Ports” on page 4-16 explain how to create custom body coordinate
systems and Body CS ports or delete existing ports.

Setting a Body CS'’s Position

The Position pane of a Body block’s dialog box allows you to specify the
position of any of a body’s local coordinate systems.

The Translated from origin of and Components in axes of lists in the pane
together specify which other of your model’s coordinate systems you use as
reference points and orientations to set up the coordinate systems of the body
you are configuring.

To specify the position of a Body CS:
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1 Open the Body block’s dialog box.

The dialog box’s Position pane lists the body’s local coordinate systems in a
table.

rBody coordinate systems

Faosition | Orientation = o I e e
Show Qrigin position Translated from | Components in

port | Portside |Mame wector [xy 2] Units arigin of axes of

r et xles |ooo m |worD  ~[|wORLD v

et =lest woo m__xljco =lco [

v JRont >fes2 (oo m__x|jco =lco [

Each row specifies the position of the coordinate system specified in the
Name column.

2 Select the units in which you want to specify the origin of the Body CS from
the CS’s Units list.

3 Specify the reference coordinate systems for the Body CS, i.e., the coordinate
system relative to which you want to measure the Body CS origin and the
orientation of the Body CS’s coordinate axes. The choices are World, the
adjoining CS, and other Body CSs on the same Body.

4-13
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~ Body coordinate systems

Fosition | Orientation | * X 2|7
Show Qrigin position Translated from | Campaonents in
port | Port side |Mame vectar [xy 2] Units arigin of axes of /BOdy (S
-
let v 00 0] 1| reference

> ||worLD

menu

Ok | Cancel | Help | Apply |

You do this by selecting the origin and orientation of the specification CS
from the Body CS’s Translated from origin of and Components in axes of
lists, respectively. For example, suppose that you want to specify the
position of CS2 relative to another coordinate system, whose origin is at the
origin of CS1 but whose axes run parallel to those of the World CS. Then you
would select CS1 from the Translated from origin of list of CS2 and
WORLD from the Components in axes of list of CS2.

4 Enter a vector specifying the location of the Body CS in the Origin position
vector [x y z] field of the CS.

The components of the vector must be in the units that you selected and
relative to the coordinate system that you selected. For example, suppose
that you had selected m as the units for specifying CS2’s origin and CS1 and
WORLD as the origin and orientation of the position specification CS for
CS2. Now suppose that you want to specify the location of CS2 as 1 meter to
the right of CS1 along the World x-axis. Then you would enter [1 0 0] as
CS2’s position vector.

5 Click Apply to accept the position setting or OK to accept the setting and
dismiss the dialog box.

Setting a Body CS’s Orientation

The Orientation pane of a Body block’s dialog box allows you to specify the
orientation of any of a body’s local coordinate systems.

To specify the orientation of a Body CS:
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1 Open the Body block’s dialog box.

2 Select the dialog box’s Orientation pane.

rBody coordinate systems

Position Orientation | = N I o
Show Relative to Specified using
port | Portside |Mame| Orientation vectar Units coordinate system canvention
Left  |Bd 4| [ORLD Bl [Euler -2 v
7 et xlest |ooo deg v [[WORLD x|Eulerxvz ]
w Rt >csz oo deg v |[[wORLD |Euerxvz ]

3 Select the units (degrees or radians) in which you want to specify the
orientation of the CS from the CS’s Units pane.

4 Select the coordinate system relative to which you want to specify the
orientation of the Body CS from the Body CS’s Relative to coordinate
system list. The choices are World, the adjoining CS, and other Body CSs on
the same Body.

5 Select the convention you want to use to specify the orientation of the Body
CS from the CS’s Specified using convention list.

6 Enter a vector that specifies the orientation of the Body CS relative to the
selected specification CS, according to the selected specification convention.

7 Click Apply to accept the position setting or OK to accept the setting and
dismiss the dialog box.

Managing Body Coordinate Systems

You will often need to modify the default body coordinate systems of a Body
block. You might want to connect a Body to more than two Joints, in which case
you need not only more Body CSs, but their Body CS ports as well. Connecting
Actuators and Sensors to Bodies requires a Body CS and Body CS port for each
connection.

The Body coordinate systems panel of a Body block’s dialog box contains a
row of buttons that allow you to add, delete, duplicate, and reorder a Body’s
local coordinate systems.

4-15



4 Modeling Mechanical Systems

4-16

rBody coordinate systems

Position | Orientation

:lllli\

+ 1—. x s

[ T~—— Down
Show Qrigin position Transzlated from | Cympapets in
port | Portside |Mame wector [xy 2] Units arigin of L‘nghe\xof U
r et xles |ooo m |worD  w[|woRLN \ ~] P
[ _lest oo | Delete
v Right Tllcsz |oon m LIICG LIICG >

Duplicate
—Add

To use these buttons, select a Body CS in the CS table and select

¢ Duplicate to duplicate the CS

® Delete to remove the selected CS from the table
® Up to move the CS’s entry one row up in the CS table

® Down to move the CS’s entry one row down in the CS table

Select Add to add a new CS.

Creating Body CS Ports

To add or delete a port from a Body block’s icon, open the block’s dialog box and
select or unselect the CS’s Show port check box in the dialog box’s Body CS

table. Click OK or Apply to confirm the change.
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Modeling Joints

In SimMechanics, a joint represents the degrees of freedom (DoF) that one body
(the follower) has relative to another body (the base). The base body can be a
finite rigid body or a ground. Unlike a physical joint, a SimMechanics joint has
no mass, although some joints have spatial extension (see “Modeling with
Massless Connectors” on page 4-26.

A SimMechanics joint does not necessarily imply a physical connection
between two bodies. For example, a SimMechanics Six-DoF joint allows the
follower, e.g., an airplane, unconstrained movement relative to the base, e.g.,
ground, and does not require that the follower ever come into contact with the
base.

SimMechanics joints only add degrees of freedom to a machine, because the
Body blocks carry no degrees of freedom. Contrast this with physical joints,
which both add DoFs (with axes of motion) and remove DoF's (by connecting
bodies). See “Counting Degrees of Freedom” on page 4-67.

SimMechanics provides an extensive Joints library with blocks for modeling
various types of joints. This section explains how to use these blocks.

About Joints

Modeling with Joint blocks requires an understanding of the following key
concepts:

¢ Joint primitives

¢ Joint types

® Joint axes

¢ Joint directionality

® Assembly restrictions
Joint Primitives

Each Joint block conceptually represents one or more joint primitives that
together specify the degrees of freedom that a follower body has relative to the
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base body. The following table summarizes the joint primitives found singly or
multiply in Joint blocks.

Primitive Type  Symbol  Degrees of Freedom

Prismatic P One degree of translational freedom along a
prismatic axis

Revolute R One degree of rotational freedom about a
revolute axis

Spherical S Three degrees of rotational freedom about a
pivot point
Weld w Zero degrees of freedom
Joint Types
The blocks in the SimMechanics Joints library fall into the following
categories:

® Primitive joints
Each of these blocks contains a single joint primitive. For example, the
Revolute block contains a revolute joint primitive.

Revolute joint

® Composite joints

These blocks contain combinations of joint primitives, enabling you to specify
multiple rotational and translational degrees of freedom of one body relative
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to another. Some model idealized real joints, for example, the Gimbal and
Bearing joints.

Others specify abstract combinations of degrees of freedom. For example, the
Six-DoF block specifies unlimited motion of the follower relative to the base.

The Custom Joint allows you to create joints with any desired combination
of rotational and translational degrees of freedom, in any order. The
prefabricated composite Joints of the Joints library have the type and order
of their primitives fixed. See “Axis Order” following.

e Massless connectors

These blocks represent extended joints with spatially separated joint
primitive axes, for example, a Revolute-Revolute Massless Connector.

Massless connector Revolute primitive

Revolute primitive
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® Disassembled joints

These blocks represent joints that SimMechanics assembles at simulation
time, for example, a Disassembled Prismatic.

Dislocated and
misaligned joint
primitives

See “Assembly Restrictions” on page 4-23 and “Modeling with Disassembled
Joints” on page 4-29.

Joint Axes

Joint blocks define one or more axes of translation or rotation along which or
around which a follower block can move in relation to the base block. The axes
of a Joint block are the axes defined by its component primitives:

® A prismatic primitive defines an axis of translation.
® A revolute primitive defines an axis of revolution.
® A spherical primitive defines a pivot point for axis-angle rotation.

For example, a Planar Joint block combines two prismatic axes and hence
defines two axes of translation.

Axis Direction. By default the axes of prismatic and revolute primitives point in
the same direction as the z-axis of the World coordinate system. A Joint block’s
dialog box allows you to point its prismatic and revolute axes in any other
direction (see “Directing Joint Axes” on page 4-24).

Axis Order. SimMechanics executes the motion of composite joints one joint
primitive at a time. A joint that defines more than one axis of motion also
defines the order in which the follower body moves along each axis or about a
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pivot. The order in which the axes and/or pivot appear in the Joint block’s
dialog box is the order in which the follower body moves.

Different primitive execution orders are physically equivalent, unless the joint
includes one spherical or three revolute primitives. Pure translations and pure
two-dimensional rotations are independent of primitive ordering.

Joint Directionality

Directionality is a property of a joint that determines the dependence of the
joint on the sign of forces or torques applied to it. A joint’s directionality also
determines the sign of signals output by sensors attached to the joint.
SimMechanics assigns a directionality to every joint in your model. You must
be able to determine the directionality of a joint in order to actuate it correctly
and to interpret the output of sensors attached to it.

When assigning directionality to a joint, SimMechanics regards the joint’s
follower as moving relative to the joint’s base. SimMechanics then assigns a
directionality to the joint, taking into account the type of joint and the direction
of the joint’s axis, as follows.

Directionality of a Prismatic Joint. If the joint is prismatic, a positive force applied to
the joint moves the follower in the positive direction along the axis of
translation. A sensor attached to the joint outputs a positive signal if the
follower moves in a positive direction along the joint’s axis of translation
relative to the base.

Base

Axis Direction

Follower

Directionality of a Revolute Joint. If the joint is revolute, a positive torque applied to
the joint rotates the follower by a positive angle around the joint’s axis of
rotation, as determined by the right-hand rule. A sensor attached to the
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revolute joint outputs a positive signal if the follower rotates by a positive angle
around the joint’s axis of revolution, as determined by the right-hand rule.

Base

Follower

Axis Direction

Directionality of a Spherical Joint. Spherical joint directionality means the positive
sense of rotation of the three rotational DoFs. Pick a rotation axis, rotating
using the right-hand rule from the base Body CS axes. Then rotate the follower
Body about that axis in the right-handed sense.

Directionality of Composite Joints. SimMechanics assigns a directionality
separately to each joint primitive, based on the primitive’s type and the
direction of its axis of translation or rotation. In each case, SimMechanics
regards the follower body of the composite joint as moving relative to the base
body along or around the joint primitive’s axis.

The order of primitives in the composite Joint’s dialog determines the spatial
construction of the joint. The first listed primitive is attached to the base, the
second to the first, and so on, down to the follower, which is attached to the last
primitive. Moving the first listed primitive moves the subsequent primitives in
the list, as well as the follower, relative to the base. Moving any primitive
moves the primitives below it in the list (but not those above it), as well as the
follower. Moving the last listed primitive moves only the follower.

Changing the Directiondlity of a Joint. You can change the directionality of a joint by
rewiring the Joint block to reverse the roles of the base and follower bodies or
by reversing the sign (direction) of the joint axis.
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Assembly Restrictions

Many joints impose one or more restrictions, called assembly restrictions, on
the positions of the bodies that they join. The conjoined bodies must satisfy
these restrictions at the beginning of simulation and thereafter within
assembly tolerances that you can specify (see “Setting Assembly Tolerances” on
page 5-5). For example, the attachment points of revolute and spherical joints
must coincide within assembly tolerances; the attachment points of a Prismatic
joint must be collinear with the prismatic axis within assembly tolerances; the
attachment points of a Planar joint must be coplanar, etc. Composite joints,
e.g., the Six-DoF joint, impose assembly restrictions equal to the most
restrictive of its joint primitives. See the block reference for each Joint for
information on the assembly restrictions, if any, that it imposes. Positioning
bodies so that they satisfy a joint’s assembly restrictions is called assembling
the joint.

All joints except joints in the SimMechanics Disassembled Joints sublibrary
require manual assembly. Manual assembly entails your setting the initial
positions of conjoined bodies to valid locations (see “Assembling Joints” on
page 4-25). SimMechanics assembles disassembled joints during the model
initialization phase of simulation. It assumes that you have already assembled
all other joints before the start of simulation. Hence joints that require manual
assembly are called assembled joints. During model initialization and at each
time step, SimMechanics also checks to ensure that your model’s bodies satisfy
all assembly restrictions. If any of your model bodies fails to satisfy assembly
restrictions, Simulink halts the simulation and displays an error message.

Creating a Joint
A joint must connect exactly two bodies. To create a joint between two bodies:

1 Select the Joint from the SimMechanics Joints library that best represents
the degrees of freedom of the follower body relative to the base body.

2 Connect the base connector port of the Joint block (labeled B) to the point on
the base block that serves as the point of reference for specifying the degrees
of freedom of the follower block.

3 Connect the follower connector port of the Joint block (labeled F) to the point
on the follower block that serves as the point of reference for specifying the
degrees of freedom of the base block.
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4 Specify the directions of the joint’s axes (see “Directing Joint Axes” on
page 4-24).

5 Ifyou plan to attach Sensors or Actuators to the Joint, create an additional
port for each Sensor and Actuator (see “Creating Actuator and Sensor Ports
on a Joint” on page 4-24).

6 Ifthe joint is an assembled joint, assemble the bodies joined by the joint (see
“Assembling Joints” on page 4-25).

Directing Joint Axes

By default the prismatic and revolute axes of a joint point in the same direction
as the z-axis of the World coordinate system. To change the direction of the axis
of a joint primitive:

1 Open the joint’s dialog box and select a reference coordinate system for
specifying the axis direction from the coordinate system list associated with
the axis primitive.

The options are the World coordinate system or the local coordinate systems
of the base or follower attachment point. Choose the coordinate system that
is most convenient.

- Parameters Primitive axis
mes | Advanced | _L— direction vector
Axis of rotation-<e
Mame | Primitive [ 2] Reference cays
R1 | Revolute |[001] WORLD <=y Reference
coordinate
system menu

2 Enter in the primitive’s axis direction field a vector that points in the desired
direction of the axis in the selected coordinate system.

Creating Actuator and Sensor Ports on a Joint

To create additional connector ports on a Joint for Actuators and Sensors, open
the Joint’s dialog box and set the Number of sensor/actuator ports to the
number of Actuators and Sensors you plan to attach to the Joint.
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Connection parameters

Current hase: =not connected=

Current follower; <notcuW
Mumber of sensor § actuator pors: |D 3:

Apply the setting by clicking OK or Apply.

Port spinner

Assembling Joints

You must manually assemble all assembled joints in your model. Assembling a
joint requires setting the initial positions of its base and follower attachment
points such that they satisfy the assembly restrictions imposed by the joint (see
“Assembly Restrictions” on page 4-23). Consider, for example, the model
discussed in “A Four Bar Mechanism” on page 2-36. This model comprises
three bars connected by revolute joints to each other and to two ground points.
The model collocates the CS origins of the Body CS ports connected to each
Joint, thereby satisfying the assembly restrictions imposed by the revolute
joints.
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Assembled Revolute Joint in the Four Bar Mechanism
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Modeling with Massless Connectors

Massless connectors simplify the modeling of machines that use a relatively
light body to connect two relatively massive bodies. For example, you could use
a Body block to model such a connector. But the resulting equations of motion
might be ill-conditioned, because that connecting body’s mass is small, and the
simulation can be slow or error prone. A massless connector also avoids global
inconsistencies that can arise if you use a Constraint block to model the
connector.

A massless connector consists of a pair of joints located a fixed distance apart.
Think of a massless connector as a massless rod with a joint primitive affixed
at each end.

Revolute joint

Revolute joint

/- b
[ ’ Massless rigid rod

Revolute axis

The initial orientation and length of the massless connector are defined by a
vector drawn from the base attachment point to the follower attachment point.
During simulation, the orientation of the massless connector can change but
not its length. In other words, the massless connector preserves the initial
separation of the base and follower bodies during machine motion.
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Note You cannot actuate or sense a massless connector.

The SimMechanics Joints/Massless Connectors sublibrary contains three
Massless Connectors:

® One with two revolute primitives (Revolute-Revolute)

® One with a revolute primitive and a spherical primitive (Revolute-Spherical)

¢ One with two spherical primitives (Spherical-Spherical)

You can set the direction of the axes of the revolute primitives.

Creating a Massless Connector
To create a massless connector between two bodies:

1 Drag an instance of a Massless Connector block from the Massless
Connectors sublibrary into your model and connect it to the base and
follower blocks.

If necessary, point the axes of the connector’s revolute joints in the direction
required by the dynamics of the machine you are modeling.

2 Assemble the connector by setting the initial positions of the base and
follower body attachment points to the initial positions required by your
machine’s structure.

During simulation, the massless connector maintains the initial separation
between the bodies though not necessarily the initial relative orientation.

Massless Connector Example: Triple Pendulum

Consider a triple pendulum comprising massive upper and lower bodies and a
middle body of negligible mass. The following model uses a Revolute-Revolute
massless connector to model such a pendulum.

4-27



4 Modeling Mechanical Systems

4-28

3— i o s 1M oz (g o 51 Mg
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In this model, the joint axes of the Revolute-Revolute connector have their
default orientation along the World z-axis. As a result, the lower arm (Body1)
rotates parallel to the World’s x-y plane.

Massless Connector Example: Four Bar Mechanism

The following model replaces one of the bars (Bar2) in the mech_four_bar
model from the Demos library with a Revolute-Revolute massless connector.

Revolute-Revalute

Ground_2 Ground_1

4 £

= ™

b oy

5 (]
Joint Sensor %/’

& |paz part| Mg

% h J g

I Angle I:l

d‘f Rewaluted Rewvoluted [‘T’




Modeling Joints

This model changes the Body CS origins of Bar3 to the following values.

Name Origin position vector Translated from origin of
CG [-0.027 0.048 0] CS1

CS1 [0.054 0.096 0] CS2

CS2 [0 0 O] ADJOINING (Ground_2)

This creates a separation between Bar3 and Barl equal to the length of Bar2
in the original model.

Try simulating both the original and the modified model. Notice that the
massless connector version moves differently, because you eliminated the mass
of Bar2 from the model. Notice also that the massless bar does not appear in
the animation of the massless connector version of the model.
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Modeling with Disassembled Joints

The SimMechanics Joints/Disassembled Joints sublibrary contains a set of
joints that SimMechanics automatically assembles at the start of simulation;
that is, SimMechanics positions the joints such that they satisfy the assembly
restrictions imposed by the type of joint, e.g., prismatic or revolute. Using these
joints eliminates the need for you to assemble the joints yourself.
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Disassembled joints differ from assembled joints in significant ways. An
assembled joint primitive has only one axis of translation or revolution or one
spherical pivot point. A disassembled prismatic or revolute primitive has two
axes of translation or rotation, one for the base and one for the follower body.
A disassembled spherical primitive similarly has two pivot points.

Note Disassembled joints can appear only in closed loops and each closed
loop can contain only one disassembled joint.

The dialog box for a disassembled joint allows you to specify the direction of
each axis.

~FParameters
Axes
Axis oftranslation
Mame [y 2] Reference csys
Base |[100] WORLD d|
Follower (01 0] WORLD e

(0]34 Cancel Help | Apply |

During model assembly, SimMechanics determines a common axis of
revolution or translation that satisfies model assembly restrictions, and aligns
the base and follower axes along the common axis.

Controlling Automatic Assembly

During model assembly, SimMechanics might move bodies connected by
assembled joints from their initial positions in order to assemble the
disassembled joints. SimMechanics’ solution to the assembly problem cannot
be predicted beforehand, except in simple cases. To prevent SimMechanics
from moving bodies during model assembly, use Joint Initial Condition
Actuator (JICA) blocks to specify the initial positions of bodies whose positions
you want to remain fixed during the assembly process. This forces
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SimMechanics to find assembly solutions that satisfy the initial conditions
specified by the JICA blocks.

Disassembled Joint Example: Four Bar Mechanism
This example creates and runs a model of a disassembled four bar machine.

Disassembled
joint

Refer to the tutorial “A Four Bar Mechanism” on page 2-36, and the
mech_four_bar demo:

1 Disconnect the Joint Sensorl block from the Revolute3 block.

2 Replace Revolute3 with a Disassembled Revolute block from the
Joints/Disassembled Joints sublibrary.

3 Open the Disassembled Revolute dialog box and, under Axis of rotation for
both Base and Follower axes, enter [0 0 1]. Close the dialog.
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4 Open the Bar2 dialog box and dislocate the joint by displacing Bar2’s CS2
origin from Bar 3’s CS1 origin.

Do this by entering a nonzero vector under Origin position vector [x y z]
for CS2, then changing the Translated from origin of pulldown entry to
ADJOINING. CS1 on Bar3is the Adjoining CS of CS2 of Bar2. Close the dialog.

5 To avoid circular CS referencing, you must check the Bar3 dialog entry for
CS1 on Bar3. Be sure that CS1 on Bar3 does not reference CS2 on Bar2.
Reference it instead to CS2 on Bar3, which adjoins Ground_2.

6 Rerun the model.

Note that the motion is different from the manually assembled case.
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Cutting Closed Loops

Simulink cannot solve models whose block schematics contain closed loops. To
simulate a model containing closed loops, SimMechanics internally converts a
closed-loop model to an open-loop model, by cutting each of the model’s closed
loops once, at a Joint, Constraint, or Driver block.
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You can specify the Joint to cut if the loop does not contain a disassembled
joint. To do this, open the Joint’s dialog box and select the Mark as the
preferred cut joint option check box on the Advanced pane in that Joint’s
dialog Parameters area. If you do not specify a preference, Simulink cuts the
loop at a Disassembled Joint block if the loop contains one; otherwise, at a
Constraint or Driver block if the loop contains a Constraint block; otherwise, at
the Joint that has the fewest degrees of freedom.

Note SimMechanics cuts a loop at a disassembled joint regardless of your
preferred cut.

To display automatically cut joints, select the Show automatically cut joints
check box on the Constraints pane of the Mechanical Environment Settings
dialog box (see “Constraints Pane” on page 5-9).

Refer to “Modeling with Disassembled Joints” on page 4-29 for more on
disassembled joints. Consult “Checking Schematic Topology” on page 4-64 to
see how SimMechanics analyzes closed loops in the model schematic.

4-33



4 Modeling Mechanical Systems

4-34

Modeling Constraints and Drivers

The SimMechanics Constraints & Driver library provides a set of blocks to
model constraints on the relative motions of two bodies. You model the
constraint by connecting the appropriate Constraint or Driver block between
the two bodies. As with joints, the blocks each have a base and follower
connector port, with the body connected to the follower port viewed as moving
relative to the body connected to the base port. For example, the following
model constrains Body2 to move along a track that is parallel to the track of
Bodyl.

—mcs My csz 2T, ), E—

Body1 Parallel Constraint BodyZ

The blocks enable you to model time-independent constraints or
time-dependent drivers.

Constraint and unactuated Driver blocks model scleronomic
(time-independent) constraints.

Actuated Driver blocks (see “Actuating a Driver” on page 4-49) model
rheonomic (time-dependent) constraints.

® Actuated Driver blocks (see “Actuating a Driver” on page 4-49) model
rheonomic (time-dependent) constraints.

Holonomic constraint functions depend only on body positions, not velocities:
f(xB, xF;t) =0

Constraints of the form
g(xB, xB, * g xF;t) =0

can sometimes be integrated into a form dependent only on positions; but if not,
they are nonholonomic.

See the reference pages for information on the specific constraint that a
Constraint or Driver block imposes.
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Constraints and drivers can only remove degrees of freedom from a machine.
Constraints and unactuated Drivers prevent the machine from moving in
certain ways. Actuated Drivers externally impose a relative motion between
pairs of bodies, and those pairs of bodies are no longer free to respond to
externally applied forces or torques. See “Counting Degrees of Freedom” on
page 4-67.

Directionality of Constraints and Drivers

Like joints, constraints and drivers have directionality. The sequence of base
to follower body determines the directionality of the constraint or driver. The
directionality determines how the sign of Driver Actuator signals affects the
motion of the follower relative to the base and the sign of signals output by
constraint and driver sensors.

Solving Constraints

When simulating a model, SimMechanics uses a constraint solver to find the
motion, given the model’s Constraint and Driver blocks. You can specify both
the constraint solver type and the constraint tolerances that SimMechanics
uses to find the constraint solution. See “Choosing a Constraint Solver” on
page 5-5 for more information.

Restrictions on Using Constraint and Driver Blocks
The following restrictions apply to the use of Constraint and Driver blocks in a
model:

® Constraint and Driver blocks can appear only in closed loops.

¢ A closed loop cannot contain more than one Constraint or Driver block.

¢ A Constraint or Driver must connect exactly two Bodies.

Constraint Example: Gear Constraint

The mech_gears model illustrates the Gear Constraint. Open the Body and
Gear Constraint blocks.

4-35



4 Modeling Mechanical Systems

4-36

coifp sz » %) m|cs1Mpcaz

Body1 Zear Constraint BodyZ

I i
p
Joint Sensor2
Rewolute2 [‘T’
Rewalute1 [‘T’

] )
Ground_2
Ground_1

{o =

Scope

Joint Senzaort .
Gear Constraint Model

The Gear Conztraint constrains the connected Bodies

Integratar to coratate inoa 31 ratio

1 ‘.
Joint Actuator s Constantd

—a\(§=

0.04

F

Constant

4 E

Body1 and Body2 have their CG positions 2 meters apart. CS1 and CS2 on
Body1 are collocated with the Bodyl CG, and similarly, CS1 and CS2 on Body2
are collocated with the Body2 CG.

The Gear Constraint between them has two pitch circles. One is centered on
the CS2 at the base Body, which is Body1, and has radius 1.5 meters. The other
is centered on CS1 at the follower Body, which is Body2, and has radius 0.5
meters. The distance between CS2 on Body1 and CS1 on Body2 is 2 meters. The
sum of the pitch circle radii equals this distance, as it must.

Visualizing the Gear Motion

The model is set up to open the visualization feature automatically upon
simulation start, with Handle Graphics and convex hulls, as explained in
“Viewing Machines with Handle Graphics” on page 6-10. Start the simulation
and watch the CG CS axis triads spin around. The CG triad at Body2 rotates
three times faster than the CG triad at Body1, because the pitch circle centered
on Body2 is three times smaller.
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You can see the same behavior in the Scope. The upper plot shows the motion
of Revolute2, and the lower plot the motion of Revolutel. Note that angular
motion is mapped to the interval (-180°, +180°] degrees.

;IEILI

The Gear Constraint is inside a closed loop formed by

Ground_1-Revolutel-Bodyl-Gear Constraint—-Body2—-Revolute2—
Ground_2

Although Ground_1 and Ground_2 are distinct blocks, they represent different

points on the same immobile ground at rest in World. So the blocks form a loop.

Driver Example: Using the Angle Driver

The following two models illustrate the Angle Driver, both with and without a
Driver Actuator. The first is mech_angle unact. Open the Body2 block.
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The bodies form a double pendulum of two rods. The Body Sensor is connected
to Body2 at CS3 = CS2 and measures all three components of Body2’s angular
velocity vector with respect to the ground.

The Angle Driver is connected between Body2 and Ground_2. Because the
Angle Driver is not actuated in this model, it acts during the simulation as a
time-independent constraint to hold the angle between Body2 and Ground_2
constant at its initial value.

Visualizing the Angle Driver Motion

The model is set up to open the visualization feature automatically upon
simulation start, with Handle Graphics and convex hulls, as explained in
“Viewing Machines with Handle Graphics” on page 6-10. Start the simulation.
The upper body swings like a pendulum, but the lower body maintains its
horizontal orientation with respect to the horizontal ground. The Scope
measures Body2’s angular velocity with respect to ground, and this remains at
Zero.

The second model is mech_angle act. Open the Driver Actuator block.
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The Driver Actuator drives the Angle Driver block. The Actuator accepts a
constant angular velocity signal from the Simulink blocks. The Actuator also
requires the angle itself and the angular acceleration, together with the
angular velocity, in a vector signal format.

The Body Sensor again measures three components of Body2’s angular velocity
with respect to the ground. Constant1 drives the angle at 15%second. While the
simulation is running, this angle changes at the constant rate. But at the same
time, the assembly and the constant length of the two pendulum rods must be
maintained by Simulink, while both rods are subject to gravity. These
requirements slow the simulation down, as they require increasing computing
power to maintain all of them simultaneously.

As in the Gear Constraint model, the two Ground blocks in these models
represent points on the same immobile ground at rest in World, so the Angle
Driver is part of a closed loop.
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Modeling Actuators

The SimMechanics Sensors & Actuators library provides a set of Actuator
blocks that enable you to apply time-dependent forces and motions to bodies,
joints, and drivers. You can also vary a body’s mass and inertia tensor.

Note SimMechanics allows you to connect an Actuator to a Ground. But it
displays an error if you attempt to simulate or update a model containing such
a connection. This is because ground is immobile and hence cannot be
actuated.

You can use Actuator blocks to perform the following tasks:

® Apply a time-varying force or torque to a body or joint

® Specify the position, velocity, and acceleration of a joint or driver as a
function of time

® Specify the initial position and velocity of a joint primitive

In general, actuators can apply any combination of forces and motions to a
machine provided that

® The applied forces and motions are consistent with each other and with the
machine’s geometry, constraints, and assembly restrictions.

e It is possible to find a unique solution for the motion of each actuated degree
of freedom (DoF).

Actuating a Body

You can use body actuators to apply forces and/or torques, but not motions, to
bodies. (You can apply motions to a body indirectly, using Joint Actuators. See
“Applying Motions to Bodies” on page 4-42.)

To actuate a body:

1 If there is not already an unused connector port available for the Actuator,
create a Body CS port on the Body for the Actuator. See the Body block
reference if you need to learn how.
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3

4

Drag a Body Actuator block from the Sensors & Actuators library into your
model and connect its output port to a Body CS port on the Body.

Open the Actuator’s dialog box.

Choose to apply a force or torque to the body:

= Select the Apply force check box if you want to apply a force to the body,
and select the units of force from the adjacent list.

= Select the Apply torque check box if you want to apply a torque to the
body, and select the units of torque from the adjacent list.

Select the coordinate system used to specify the applied torque from the
Using reference coordinate system list.

The list allows you to choose either the World CS or the Body CS of the port
to which you attached the Actuator.

Create vector signals that specify the value of the applied torque and force
at each time step.

You can use any Simulink source block (for example, an Input port or a Sine
Wave block) or combination of Simulink blocks to create the Body Actuator
signal. You can also use the output of a Sensor block connected to the Body
as input to the Actuator, thereby creating a feedback loop. Such loops are
useful for modeling springs and dampers (see “Checking Model Validity” on
page 4-64.)

Connect the force and/or torque signal to the input port of the Actuator.

If you are applying both a force and a torque to the body, connect the force
and torque signals to the inputs of a two-input Mux block. Then connect the
output of the Mux block to the input of the Actuator.

Body Actuator Example: Pure Kinetic Friction

The mech_ballistic_kin_fric model in the Demos library provides an
example of how to implement pure kinetic friction. This type of friction is a
continuous force that depends on a body’s motion relative to a medium (such as
air), as well as on physical characteristics of the body. Kinetic friction, unlike
“stiction,” involves no “sticking” or locking of motion, and the friction is not
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discontinuous. While you could use the Joint Stiction Actuator, this is not
necessary. This model applies air friction or drag to a projectile with a Body
Actuator.

Open the Air Drag subsystem. If you double-click the block, a mask dialog box
opens asking for the drag coefficient Cd. If you right-click the block and select
Look under mask, the subsystem itself appears:

Friction

Density

The Air Drag subsystem computes the air friction according to a standard air
friction model. (See the Aerospace Blockset documentation for more
information.) The drag always opposes the projectile’s motion and is
proportional to the product of the air density, the projectile’s cross-sectional
area, and the square of its speed.

Run the model with the default drag coefficient (zero). The XY Graph window
opens to plot the parabolic path of the projectile. Now open the Air Drag dialog
again and experiment with different drag coefficients Cy. Start with small
values such as C4 = 0.05. For a rigid sphere, Cg is two. The effect of the drag is
dramatic in that case.

Applying Motions to Bodies

The Body Actuator block cannot actuate a Body with motion signals. But you
can construct such body motion actuators with a combination of other blocks.
See “Joint Actuator Example: Body Driver” on page 4-46.
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Varying a Body’s Mass and Inertia Tensor

The Variable Mass & Inertia Actuator block gives you a way to vary a body’s
mass and/or inertia tensor as external functions of time. You specify these
functions with incoming Simulink signals.

The Variable Mass & Inertia Actuator block does not apply any thrust forces or
torques to the Body so actuated. Mass loss or gain in a particular direction
results in thrust forces and torques. You must apply these forces and torques
to the Body separately with Body Actuator blocks.

The Variable Mass & Inertia Actuator block changes the actuated Body’s mass
and rotational inertia by attaching an invisible body to the actuated body at a
particular Body coordinate system (CS). This invisible body has a mass and an
inertia tensor that vary in time as specified by the Actuator’s external
Simulink signal. SimMechanics treats the actuated body and the invisible body
as a single composite body with a new mass, new center of gravity (CG), and
new inertia tensor compounded from the two constituent bodies. You can add
multiple Variable Mass & Inertia Actuator blocks to one Body.

To vary the mass and/or inertia tensor of a Body with this Actuator:

1 From the Sensors & Actuators library, drag a Variable Mass & Inertia
Actuator block into your model.

2 Attach the Actuator’s connector port to the Body CS on the Body where you
want the invisible variable mass to be. If a suitable Body CS port does not
exist on the Body, open its dialog and create one.

3 Create an external Simulink signal to model the time-varying mass and/or
inertia tensor for this invisible body. Connect it to the Variable Mass &
Inertia Actuator block’s Simulink input port.

This Simulink signal can have one, nine, or ten components, depending on
whether you are varying the mass only, the inertia tensor only, or both.

Example: Point Rocket

The following model simulates a simple rocket. It treats the rocket as a point
mass moving upward (+y direction) with an exhaust pointing downward (-y
direction). The rocket loses mass at a constant rate.
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The Rocket block is the point mass. The Thrust Velocity block represents the
downward exhaust and, multiplied by the mass loss represented by the Fuel
Loss block, actuates the Rocket body with a thrust force pointing upward. The

Thrust block (a body actuator) applies this force at the local Body CS, which,
for a point rocket, is identical to the Rocket’s CG CS.

The same mass loss from the Fuel Loss block that produces the thrust force also
must vary the rocket’s mass directly. The Variable Mass Actuator block
accomplishes this by feeding the same mass loss signal to the Rocket block.

Thrust Welocity

Product b ~

Thrust

=

Ground

Cs2
—um| S
GCSS

Frismatic Rocket
&7 —»{:
Joint Sensor Seope

Actuating a Joint

o % [
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Block Parameters: Thrust Vel x|
— Congtant

Output the constant specified by the 'Constant value' parameter. |f
‘Conztant value' iz a vector and Interpret vector parameters as 1-0° iz on,

treat the constant value az a 1-D aray. Otherwize, output a matrix with the
zame dimensions as the constant walue.

=

Constant value:
Jio-1o00]

¥ Interpret vector parameters as 1-0

QK I Cancel Help Apply

You individually actuate each of the prismatic and revolute primitives of an
assembled joint. You can apply

® Forces or translational motions (but not both) to prismatic primitives

® Torques or rotational motions (but not both) to revolute primitives
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Note You cannot actuate spherical or weld primitives, disassembled joints, or
massless connectors.

To actuate a prismatic or revolute joint primitive of an assembled joint:

Create an Actuator port on the Joint block for the primitive (see “Creating
Actuator and Sensor Ports on a Joint” on page 4-24).

Drag a Joint Actuator or Joint Stiction Actuator from the Sensors &
Actuators library into your model and connect its output port to the Actuator
port on the Joint.

The remaining steps in this procedure apply to the creation of a standard
Joint Actuator. For information on creating a stiction actuator, which
applies classical Coulombic friction to a prismatic or revolute joint, see the
Joint Stiction Actuator block reference page.

Open the Joint Actuator’s dialog box.

Select the primitive you want to actuate from the Connected to primitive
list on the dialog box.

Select the type of actuation you want to apply, either Generalized forces or
Motion.

If you are actuating a prismatic primitive:
= Ifyou selected Generalized Forces as the actuation type, select the units
of force from the Apply force list.

= If you selected Motion as the actuation type, select the units for each
motion to be actuated (position, velocity, acceleration).

If you are actuating a revolute primitive:
= Ifyou selected Generalized Forces as the actuation type, select the units
of torque from the Apply torque list.

= If you selected Motion as the actuation type, select the units for each
motion to be actuated (angle, angular velocity, angular acceleration).
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8 Click OK to apply your choices and dismiss the dialog box.

Each joint primitive that you motion-actuate is lost as a true degree of
freedom in your machine. That is because the DoF can no longer respond
freely to externally applied forces or torques. See “Counting Degrees of
Freedom” on page 4-67.

9 Create a signal that specifies the applied force, torque, or motions at each
time step.

You can use any Simulink source block or any combination of blocks to

create the actuator signal. You can also connect the output of a Sensor block
attached to the Joint to the Actuator input, thereby creating a feedback loop.
You can use such loops to model springs and dampers attached to the joint.

A force or torque signal must be a scalar signal. A motion signal must be a
1-D array signal comprising three components: position, velocity, and
acceleration. The directionality of the joint determines the response of the
follower to the sign of the actuator signal (see “Joint Directionality” on
page 4-21).

10 Connect the Actuator signal to the Actuator port on the Joint.

Note SimMechanics allows you to connect multiple Actuators to the same
primitive. But it halts and displays an error message if you attempt to update
or simulate a model containing such a connection. Exception: You can apply a
Joint Initial Condition Actuator and force or torque actuation (including
stiction) to the same primitive. See “Specifying Initial Positions and
Velocities” on page 4-50.

Joint Actuator Example: Body Driver
The mech_body _driver model illustrates the use of Joint Actuators to create a
custom driver.
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The Body Driver subsystem accepts an 18-component signal that feeds the
coordinates, velocities, and accelerations for all six relative DoFs between Body
and Body1. The subsystem uses a Bushing block that contains three
translational and three rotational primitives to represent the relative DoF's:
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You can modify the body driver to move only one of the bodies, thereby creating

a motion actuator. To move Body1 relative to World, for example, remove the

blocks Body and Weld and connect the subsystem Body Driver directly to

Ground.

Joint Stiction Actuator Example: Mixed Static and Kinetic Friction

The mech_dpen_sticky model in the Demos library illustrates a driven double
pendulum, with “sticky” friction or stiction applied to both revolute joints with
the Joint Stiction Actuator block.

Open the unmasked Joint1 or Joint2 Stiction Model blocks (marked in yellow)

to view the subsystems:



Modeling Actuators

Revalute Jaint1

-
-~ -
— -
- -
-
-
- -
-
- - o
-
-

.
Externa input fam]

Revalute?

o

&

Body1| Mg
Actuator

Kinetic friction Mo Joint Sensor
coefiicient Peaction force ()
jon foree
iu)

Static: friction
coefficient

Computed torgus

Reverse limit Static friction
o coafficient

Joint Stiction Actuator

Each Stiction subsystem contains a Joint Stiction Actuator block (marked in
orange) that requires static and kinetic friction coefficients via their respective
blocks. For either revolute, an angular velocity threshold, specified through the
block dialog, determines if a joint locks. Once locked, the joint cannot move
until a combination of forces reaches a threshold specified by the Forward
Stiction Limit or Reverse Stiction Limit.

Run the model with different kinetic and static friction coefficients and
different velocity thresholds. View the results in the Scope blocks and through
a visualization window. You can find more details on how stiction works in
SimMechanics by consulting the Joint Stiction Actuator block reference page.

Actuating a Driver

Actuating a Driver allows you to specify the time dependence of the rheonomic
constraint applied by the Driver.
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To actuate a Driver:
1 Create an additional connector port on the Driver for the Actuator.

Create the additional port in the same way you create an additional Driver
port on a Joint (see “Creating Actuator and Sensor Ports on a Joint” on
page 4-24).

2 Drag an instance of a Driver Actuator from the Sensors & Actuators library
into your model.

3 Connect the Actuator’s output port to the Actuator port on the Driver.
4 Create a signal that specifies the time dependence of the Driver constraint.

5 Connect the actuation signal to the input port of the Driver Actuator.

Specifying Initial Positions and Velocities

The Joint Initial Condition Actuator (JICA) block allows you to specify the
initial positions and velocities of unactuated joints and hence the bodies
attached to them. You can use JICA blocks to

® Specify nonzero initial joint velocities
The default initial velocity of a joint primitive is zero. You must use a JICA
block to specify a joint’s initial velocity if the initial velocity is not zero.

® Override the initial position settings of a body pair
The CG CS origin settings in the dialog boxes of Body blocks specify the
bodies’ initial positions. Using JICA blocks, you can override these initial

body positions by resetting their relative positions in the Joints connecting
them.

Using JICA Blocks

Specifying initial conditions on a joint primitive is a special kind of actuation:
one that occurs only once at the beginning of simulation. That is why the JICA
block resides in the Sensors & Actuators library.
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Note A JICA block, unlike other Actuators, does not have an input port. The
JICA’s dialog box completely specifies the Actuator input.

With a JICA block, you can specify the initial positions and velocities of any
combination of prismatic and revolute primitives within a given Joint. (You
cannot specify ICs for spherical and weld primitives.)

To specify the initial velocity and/or position of a joint primitive:

Drag a JICA block from the Sensors & Actuators library and drop it into
your model window.

Create an additional connector port on the Joint block containing the
primitive whose initial condition you want to specify.

Connect the connector port on the JICA block to the new connector port on
the Joint block.

Note Do not connect the JICA block to the Joint ports marked “B” or “F”
(base or follower). These ports are intended for connecting to Bodies.

Open the JICA block’s dialog box. From the primitive list for the Joint,
choose the primitives you want to actuate by selecting their check boxes.

Enter the initial positions of the actuated primitives, relative to the Body
CSs attached to the Joint, in the Position field.

From the pull-down menu on the right, select Units for the initial positions.

Enter the initial velocities of the actuated primitives, relative to the Body
CSs attached to the Joint, in the Velocity field.

From the pull-down menu on the right, select Units for the initial velocities.

Click Apply or OK.
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JICA Example: A Simple Pendulum

Open mech_spen from the Demos library, then open the Sensors & Actuators
library. Follow the steps from the preceding section, “Using JICA Blocks” on
page 4-50, to connect one Joint Initial Condition Actuator block to the Revolute
block and configure it. This Joint contains only one primitive, R1, which is the
primitive listed in the JICA dialog box.
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Set the initial conditions in two ways and compare the resulting simulations in
the scope:

1 First set the initial Position (angle) to 60 deg, which is 60° down from the
left horizontal (30° clockwise from vertically down), and set the initial
Velocity to 0 deg/s.
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2 Run the simulation for one second. Note in the scope that the initial angle
(yellow curve) is displaced upward to 60°, while the initial velocity (purple
curve) still starts at zero.

=10 x|
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Initial angle

Initial angular velocity

Time offzet; O

3 Now reset the initial Velocity to 30 deg/s, leaving the initial Position
(angle) at 60 deg.

4 Rerun the simulation for one second. Note in Scope that the initial angle is

still displaced upward to 60°, but the initial velocity is also displaced upward
to 30%sec.
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The joint directionality is assigned in mech_spen so that the positive rotation
axis is the +z-axis. Looking from the front, positive rotation swings down and

right, counterclockwise.
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Modeling Force Elements

Internal forces are forces the machine applies to itself as a result of its own
motion. Unlike actuation forces, you do not apply these forces from outside the
machine with Simulink signals. The body motions instead generate the forces
and torques directly.

The Force Elements library provides ready-made blocks to represent certain
kinds of internal forces and torques acting between bodies.

® “Inserting a Linear Force Between Bodies”

¢ “Inserting a Linear Force or Torque Through a Joint” on page 4-57

You can also create your own customized sensor-actuator feedback loops to
model springs, dampers, and more complex internal forces.

® “Customizing Force Elements with Sensor-Actuator Feedback” on page 4-58

Inserting a Linear Force Between Bodies

A generalized linear force between two bodies is a linear function of the two
bodies’ relative displacement vector r and relative velocity v, with constant
coefficients. The Body Spring & Damper block models a force acting between
two bodies along the axis r connecting them:

F=—k(r—rg)—bv,

The block is connected on either side to Bodies at a Body coordinate system
(CS). The displacement r is a vector from one Body CS on one Body to the other
Body CS on the other Body. Newton’s third law requires that the forces that the
bodies exert on one another be equal and opposite.

The common physical system this force model represents is a spring-damper
combination, where the damper is a dashpot acting only along the spring axis.
The damping is solely a function of the component v | | of the velocity vector
projected along the displacement r. (Thus the damping in this block cannot
represent the damping due to a viscous medium, because there is no damping
force perpendicular to the spring axis. See “Inserting a Linear Force or Torque
Through a Joint” on page 4-57.)

You enter the constant parameters r(, k£, and b in the Body Spring & Damper
dialog. ry is the spring’s natural length, the length it has when no forces are
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acting on it. The spring constant £ and damping constant b should be
nonnegative.

To complete a linear force model between bodies, you need to model the
translational degrees of freedom (DoFs) between them, as the Force Element
block itself does not represent these DoFs. You can use any Joint block
containing at least one prismatic primitive to represent translational motion.
The two Bodies, the Joint, and the Body Spring & Damper must form a closed
loop.

The following block diagram represents two Bodies with a damped spring
between them. The Custom Joint represents the bodies’ relative translational
DoF's with three prismatic primitives. In this case, CS2 and CS3 on Body1 are
the same, and CS2 and CS3 on Body2 are the same. Thus, the Joint is
connected to the same Body CSs that define the ends of the spring-damper axis.

~
/ ~
Body Spring & Dampar ~ -
1 ~
- Parameters
Axes | Advanced | * ¥|2|F
Axis of action
Mame - Primitive [y 2] Reference cays
F1 - Prismatic = [oo WORLD -
F2 - Prismatic = @10 WORLD b
F3- Prismatic = o] WORLD b
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Inserting a Linear Force or Torque Through a Joint

Another way of inserting a linear force element between two bodies is to
connect it to a joint that already connects the bodies. You have to apply the
force element, like an actuator, to each primitive in the joint individually. This
approach has several advantages over the Body Spring & Damper:

® You can create a different force law, with a different spring length, spring
constant, and damping constant, for each of the joint’s primitives.

® The spring and damper forces acting on each primitive act independently in
their respective directions, instead of depending on just the interbody

distance with a single spring length, spring constant, and damping constant.

This allows you to create spring and damping forces that act independently
in two or three dimensions, unlike the Body Spring & Damper force, which
acts only along a single axis. Damping forces acting on multiple primitives

act as a two- and three-dimensional viscous medium, not as a dashpot.

¢ The joint representing the DoF's between the bodies is already present.

You use the Joint Spring & Damper block to implement such spring-damper
forces/torques together with a Joint. With it, you can apply a linear spring and
damper force to each prismatic primitive and a linear torsion and damper
torque to each revolute primitive in a Joint block. (You cannot apply these
torques to a spherical primitive.)

Pick a Joint already connected between two Bodies. You connect the Joint
Spring & Damper block to a Joint block at a sensor/actuator port on the Joint.
(The section “Actuating a Joint” on page 4-44 explains how to create such a

port.) The Joint Spring & Damper dialog then lists each primitive in the Joint.

For each prismatic primitive you want to actuate with a spring-damper force,
you specify a natural spring length (offset), spring constant, and damping
constant. For each revolute primitive you want to actuate with a
torsion-damper torque, you specify a natural torsion angle (offset, or angle in
which the primitive points absent any torques), torsion constant, and damping
constant. You make these specifications in the Joint Spring & Damper dialog.

Here are two bodies connected by a Custom Joint in turn connected to a Joint
Spring & Damper block.
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Unlike the example in the preceding section, “Inserting a Linear Force
Between Bodies” on page 4-55, the Custom Joint can have up to three
prismatics and three revolutes, each with a separate linear force or torque
acting through it. Each force or torque acts equally and oppositely on each
body, following Newton’s third law.

Customizing Force Elements with Sensor-Actuator
Feedback

You can create your own force elements acting through Joints or on Bodies by
using Sensor-Actuator feedback loops. With this technique, you can not only
model linear forces, but any force that depends on body or joint positions and
velocities.

This simple example illustrates the method with a linear spring force law.
Hooke’s law states that the force exerted by an extended spring is proportional
to its displacement from its unextended position: F' = —kx.

The following SimMechanics model represents a spring that obeys Hooke’s law.

[T
6

e

Force

Spring %
Dizplacment -

Spring
Constant
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The model uses the Gain block labeled Spring Constant to multiply the
displacement of the prismatic joint labeled Spring along the World’s y-axis by
the spring constant -0.8. The output of the Gain block is the force exerted by
the spring. The model feeds the force back into the prismatic joint via the
Actuator labeled Force. The model encapsulates the spring block diagram in a
subsystem to clarify the model and to allow a spring to be inserted elsewhere.
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Modeling Sensors

The SimMechanics Sensors & Actuators library provides a set of Sensor blocks
that enable you to measure
® Body motions (see “Sensing Body Motions” on page 4-60)

¢ Joint motions and forces or torques on joints (see “Sensing Joint Motions and
Forces” on page 4-62)

® Constraint reaction forces and torques (see “Sensing Constraint Reaction
Forces” on page 4-62)

Note You can feed Sensor output back into Actuator blocks to model springs,
dampers, and other mechanical devices that depend on force feedback. See
“Actuating a Body” on page 4-40, “Actuating a Joint” on page 4-44, and
“Checking Model Validity” on page 4-64.

Sensing Body Motions

To sense the position, velocity, or acceleration of a body represented by a Body
block:

1 If the Body block does not have a spare local coordinate system with a Body
CS port, create one (see “Managing Body Coordinate Systems” on
page 4-15).

2 Drag a Body Sensor block from the Sensors & Actuators library into your
model.

3 Connect its connector port to a spare Body CS port on the Body.

4 Open the Sensor’s dialog box.



Modeling Sensors

<} Block Parameters : Body - o] x|

- Description
Measures linearangular position, velocity, andiar acceleration of
a Body with respectto a specified coordinate systerm. Optional
rotation matrix for Body arientation. Output is Simulink signal.
Multiple output signals can be hundled into one signal.

rMeasurements

Measuring Body coordinate system (see block diagrarm)

With respect to coordinate system IAbsqute orld) VI

~ [m ~]
T [y '] velocity mis -

™ [ax By 8z'] Angular velocity Idegis vl

™ [3x3] Ratation matrix

™ [ y" 2'] Acceleration ImIs"z vI
™ [Bx" By"; B2"] Angular acceleration Idegrs"E vl

i Qutput selected parameters as one signal

Ok | Cancel | Help | Apply |

Select the coordinate system relative to which the sensor measures its
output from the With respect to coordinate system list.

Select the check boxes next to the motions that you want to sense (see the
Body Sensor block reference page).

If you have chosen to sense more than one type of motion and want the
Sensor to multiplex the motions into a single output signal, select the
Output selected parameters as one signal check box.

Click OK or Apply.

Connect the output of the Body Sensor block to a Simulink Scope or other
signal sink or to a motion feedback loop, depending on your needs.
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Sensing Joint Motions and Forces

The SimMechanics Joint Sensor block enables you to measure the motions of
joints. It can also measure the relative forces and torques between the bodies
connected to the joint. These include the computed force or torque (the force or
torque needed to reproduce the joint’s motion) and the reaction force and torque
on a joint primitive. (You cannot measure the computed force or torque on a
spherical or weld primitive.) You must connect a separate Joint Sensor block to
a Joint block for each joint primitive that you want to sense.

To sense the motions, forces, and torques of a joint primitive contained by a
Joint block:

1 If the Joint block does not have a spare Sensor port, create one (see
“Creating Actuator and Sensor Ports on a Joint” on page 4-24).

2 Drag a Joint Sensor block from the Sensors & Actuators library into your
model.

3 Connect its connector port to the spare Sensor port on the joint.

4 Use the Sensor’s dialog box to configure the Sensor to measure the motions,
forces, and torques that you want to measure (see the Joint Sensor block
reference page).

5 Connect the output of the Joint Sensor block to a Simulink Scope or other
signal sink or to a motion feedback loop, depending on your needs.

Sensing Constraint Reaction Forces

The SimMechanics Constraint & Driver Sensor block enables you to measure
the reaction forces and torques induced on the constraints modeled by
SimMechanics Constraint and Driver blocks.

To sense the reaction force and/or torque induced by a Constraint or Driver
block:

1 If the Constraint or Driver block does not have a spare Sensor port, create
one.

2 Drag a Constraint & Driver Sensor block from the Sensors & Actuators
library into your model.
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3 Connect its connector port to a spare Sensor port on the Constraint or Driver
block.

4 Open the Sensor block’s dialog box.

<} Block Parameters : Constrain - o] x|

rDescription

Measures ConstraintDriver reaction forcesttorques between Base
(By and Faollower {F) Bodies with respect to selected coordinate
system. Output is Simulink signal. Farce and tarque vectars can he
muxed.

~ Measurements

Reactions measured on: Base hd
With respect to coordinate systern: [Absolute (orld) hd
¥ Reaction tarque r-m i
IV Reaction force IN i
¥ Output selected parameters as one signal

QK | Cancel | Help | Apply |

5 Select the body (follower or base) on which to measure the reaction force
from the Reactions measured on list.

6 Select the coordinate system relative to which the Sensor measures its
output from the With respect to coordinate system list.

7 Select the Reaction torque check box if you want the Sensor to output the
reaction torque on the base (or follower) body.

8 Select the Reaction force check box if you want the Sensor to output the
reaction force on the base (or follower) body.

9 Ifyou have chosen to output both reaction force and torque and want the
Sensor to multiplex them into a single output signal, select the Output
selected parameters as one signal check box.

10 Click OK or Apply.

11 Connect the output of the Body Sensor block to a Simulink Scope or other
signal sink or to a motion feedback loop, depending on your needs.
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Checking Model Validity

Simulink can simulate a SimMechanics model only if it is valid. A model is
valid if it satisfies the following rules:

¢ Every schematic in the model is topologically valid (see “Checking Schematic
Topology” on page 4-64).

¢ The model contains at least one degree of freedom (see “Counting Degrees of
Freedom” on page 4-67).

Checking Schematic Topology

To avoid simulation failures, you must ensure that the topology of your block
diagram is valid. A block diagram is topologically valid if each schematic that
it contains is valid. A schematic is valid if its spanning tree is valid. Thus to
determine if your model is valid, first determine the spanning tree of each
schematic that it contains and then the validity of the resulting spanning trees.

Determining a Schematic’s Spanning Tree

To determine the spanning tree of a schematic, remove all blocks from the
schematic except Body and Joint blocks and open every closed loop in the
resulting reduced schematic. To open a closed loop, conceptually follow the
loop-cutting rules in “Cutting Closed Loops” on page 4-32.

For example, here is a schematic with two closed loops.
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Cutting the top loop at the Disassembled Prismatic and removing the Parallel
Constraint block (thus simultaneously cutting the bottom loop) yields the

schematic’s spanning tree.
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Determining the Validity of a Spanning Tree
To be valid, a spanning tree must meet the following requirements:
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¢ The spanning tree must have at least one Ground block to serve as a
reference to World.

® Every Joint block must be connected to exactly two Body blocks.

¢ Every non-Ground Body block must have a unique path to a Ground block.
(This need not be true of the model schematic itself.) This ensures that, while
each body moves via joints relative to other bodies, SimMechanics can
resolve all bodies’ motions into absolute motions with respect to World.

¢ Every non-Ground Body block at an end of a sequence of Bodies must have
nonzero inertia (mass or inertial moment) associated with all joint primitives
that can move. Each translational DoF must carry a nonzero mass, and each
rotational DoF a nonzero inertial moment. This prevents infinite
accelerations when forces and torques are applied.

Examples of Invalid Schematic Topologies
Here are some examples of invalid topologies:

® This one-loop schematic lacks a Ground block.

r@{cm "] csz)ﬂ—q ‘Tf »—3{051 "] csz);;lT
BodyZ Dizazzembled Revolute Body3

Rewalute1 [‘T’ [‘T’ Rewolute2

Body1

¢ This open machine schematic has a dangling Joint block.
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® Another open machine schematic features a zero-mass body at one end of a
chain of bodies.
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The last two invalid examples are dynamically (but not topologically)
equivalent, because a zero-mass body is dynamically no body at all.

Counting Degrees of Freedom

Identifying and counting the independent degrees of freedom (DoF's) of a
machine are important for trimming and linearizing SimMechanics models
(see “Trimming SimMechanics Models” on page 7-12 and “Linearizing
SimMechanics Models” on page 7-23) and for correcting simulation errors (see
“Troubleshooting Simulation Errors” on page 5-16).

Your SimMechanics model must have at least one DoF to be valid. A free
physical body has six DoF's: three translational and three rotational. But in a
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machine, connections between bodies by joints, constraints, and drivers, and
motion actuation by joint and body actuators reduce the machine’s
independent DoF's to a smaller number. You also reduce a body’s DoF's if you
confine the machine’s motion to one or two spatial dimensions.

In SimMechanics, a Body block has no DoF's. Connecting Joints to a Body adds
DoF's to the machine. The joint primitives represent the Body’s DoF's relative
to other connected Bodies or Grounds. Connecting Constraint and Driver
blocks to Bodies or motion-actuating joint primitives in Joints removes DoF's
from the machine.

Finding Independent Degrees of Freedom

Here is the formula for determining the number of independent DoFs your
model has:

# of independent DoF's = # of body DoF's + # of primitive DoF's —
# of motion restrictions

The following three steps define each term on the right-hand side:
1 Calculate the number of body DoFs from the number of Body and Joint
blocks in your model:
# of body DoF's = 6 * (number of Bodies — number of Joints)
If you have confined the machine to move in only two dimensions, replace

the 6 by 3. If you have confined the machine to move in only one dimension,
replace the 6 by 1.

2 Calculate the number of primitive DoF's by adding up the primitive DoFs
from the Joint dialog boxes:

= Count one for each prismatic (P) or revolute (R) primitive.
= Count three for each spherical (S) primitive.

= Count zero for each weld (W) primitive.
Do not count a primitive DoF that is motion-actuated by a Joint Actuator.

3 Calculate the number of motion restrictions by adding up the motion
restrictions of each Joint Actuator, Constraint, and Driver block. Different
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blocks from the Constraints & Drivers library impose different numbers of
motion restrictions.

Constraint Block Restrictions Driver Block Restrictions
Gear One Angle One
Parallel Two Distance One
Point-Curve Two Linear One
Velocity One

Be sure not to count redundant motion restrictions. These are restrictions
that forbid the motion of joint primitives that could not move anyway even
if the constraint were removed, because of how the joints are configured.

Example: A body is connected to a ground by a single prismatic. You place a
constraint on the body that prevents it from moving perpendicularly to the
prismatic axis. The body could not move in that direction even if you
removed the constraint. So the constraint is redundant, and you would not
count it as a motion restriction.

DoF Example: Double Pendulum

The mech_dpen model from the Demos library represents planar double
pendulum motion actuated by a Joint Actuator.
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The double pendulum has two rigid bodies, such as two rods, confined to move
in two dimensions. Ignoring the Joint Actuator temporarily, there are two
bodies, two joints, and two revolute primitives, and thus 3 *(2-2) +2 =2
independent DoF's. There are many ways to represent these two DoF's, but the
two revolute primitives are the simplest way.

Including the Joint Actuator in the DoF count removes the revolute primitive
in the Revolute block as an independent DoF'. So this model actually only has
one independent DoF, the revolute primitive in the Revolutel block.

DoF Example: Four Bar Mechanism

The four bar mechanism of “A Four Bar Mechanism” on page 2-36 has four
revolutes. You can establish that only 3 * (3 —4) +4 = 1 of these DoF's is actually
independent and arrive at the same result obtained in the Four Bar
Mechanism example.
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Models

SimMechanics gives you multiple ways to simulate and analyze machine motion in the Simulink
environment. Running a mechanical simulation is similar to running a simulation of any other type
of Simulink model. It entails setting various simulation options, starting the simulation, and dealing
with simulation errors. See the Using Simulink guide for a general discussion of these topics. This
chapter focuses on aspects of simulation specific to SimMechanics models.

Choosing Simulation Options Special settings in SimMechanics and Simulink for running
(p. 5-2) mechanical models
Mechanical Environment Controlling the SimMechanics simulation parameters

Settings Dialog Box (p. 5-7)

How SimMechanics Works Overview of how SimMechanics analyzes and simulates a
(p. 5-14) mechanical model
Troubleshooting Simulation Fixing SimMechanics simulation errors

Errors (p. 5-16)

Generating Code (p. 5-22) Using Real-Time Workshop to translate your SimMechanics
models into C code

Limitations (p. 5-25) How to use compatible Simulink simulation tools with
SimMechanics models
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Choosing Simulation Options

Simulink provides an extensive set of simulation options that apply to any type
of model. SimMechanics provides additional options that apply specifically to
simulating mechanical models. The following sections discuss those standard
Simulink options for which mechanical models entail special consideration and
the additional mechanical system-specific options of SimMechanics.

You choose the special mechanical settings in the Mechanical Environment
Settings dialog (see “Mechanical Environment Settings Dialog Box” on
page 5-7).

Choosing an ODE Solver

SimMechanics uses an ODE solver to solve a system’s equations of motion,
typically in tandem with a constraint solver (see “Choosing a Constraint
Solver” on page 5-5). Simulink provides an extensive set of ODE solvers that
represent the most advanced numerical techniques available for solving
differential equations in general and equations of motion in particular. The
Solver pane of a model’s Simulation Parameters dialog box allows you to
select any of these solvers for use by Simulink in solving the model’s dynamics
(see “The Solver Pane” in the Simulink User’s Guide more information).

Solving Stiff Systems

The Dormand-Prince solver (ode45) that Simulink uses by default works well
for many mechanical systems, but might require too much time to solve
systems that are stiff, that is, have bodies that move at widely varying speeds
or that have many discontinuities in their motion. An example of a stiff system
is a pair of coupled oscillators in which one body is much lighter than the other
and hence oscillates much more rapidly. Any of the following solvers might
require significantly less time than the default solver to solve a stiff system:

® ode15s: Variable-order solver based on a backward differentiation rule
(variant of Gear’s method).

® ode23t: Trapezoidal rule solver. Use this solver if your system is slightly
stiff, to avoid numerical damping.

® ode23tb: Implicit Runge-Kutta method solver combining trapezoidal rule
and a backward differentiation rule of order 2. More efficient than ode15s if
the solution has many discontinuities.
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® ode23s: Modified Rosenbrock method solver of order 2. This solver is also
more efficient than ode15s, if the solution has many discontinuities.

Try each of these solvers in turn and then use the solver that gives the best
results.

Setting ODE Solver Tolerances

By default Simulink automatically determines the absolute tolerance used by
ODE solvers. The resulting tolerance might not be small enough for a
mechanical system, particularly a nonlinear or chaotic system. Try running a
simulation with the relative tolerance set to 1e -3 (the default) and the absolute
tolerance set to 1e-4. Then increase the tolerances if the simulation takes too
long or decrease them if the solution is not sufficiently accurate.

If your model contains one or more Joint Stiction Actuator blocks, you must
also take into account the velocity thresholds of these blocks when setting the
absolute tolerance of the ODE solver. If the absolute tolerance of the solver is
greater than a joint’s velocity threshold, the simulation might never detect the
unlocking of a joint. To prevent this from happening, set the absolute tolerance
to be no more than 10% of the size of the smallest stiction velocity threshold in
your model.

Handling Singularities

Singularities in a system’s equations of motions can dramatically slow down a
standard Simulink ODE solver or even prevent it from finding a solution to a
system’s equations of motions. Because singularities are frequent in
mechanical equations of motion, SimMechanics provides an optional feature,
called Robust Singularity Handling, that works together with the currently
selected ODE solver to solve singular equations of motions efficiently. This
feature allows Simulink to simulate models that otherwise cannot be simulated

or cannot be solved in a reasonable amount of time because of the singularities.

To enable this feature, select Use robust singularity handling on the
Constraints pane of the Mechanical Environment Settings dialog (see “Use
robust singularity handling” on page 5-10). Because this option requires extra
computation whether or not singularities exist, you should select this option
only as a last resort, i.e., select this option only if you cannot find a standard
Simulink solver that solves your model in a reasonable amount of time without
it.
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Choosing an Analysis Mode

You can use SimMechanics to compute the motion that results from applying
forces to a mechanical system or the forces required to produce a specified
motion in a mechanical system. To compute either type of result, you must
build an appropriate model and choose an appropriate mode of analysis.

Forward Dynamics Mode

Computes the positions and velocities of a system’s bodies at each time step,
given the initial positions and velocities of its bodies and any forces applied to
the system. Use this mode to simulate a model that represents the initial
positions and velocities of the system’s bodies and the forces on those bodies.

You ran the examples from previous chapters in the Forward Dynamics mode

¢ “Running a Demo Model” on page 1-5

¢ “Building a Simple Pendulum” on page 2-11 and “A Four Bar Mechanism” on
page 2-36

as well as the many examples of the “Modeling Mechanical Systems” chapter.

Inverse Dynamics Mode

Computes the forces required to produce a specified velocity for each body of an
open-loop system. Use this mode to simulate an open-loop system whose model
specifies the velocity of every degree of freedom of every body at every time
step. See “Open-Topology Example: Double Pendulum” on page 7-7 for an
example of using this mode to find the forces on an open-loop system.

Kinematics Mode

Computes the forces required to produce a specified velocity for each body of a
closed-loop system. Use this mode to simulate a closed-loop system whose
model specifies the velocity of every independent degree of freedom at every
time step. See “Closed-Loop Example: Four-Bar System” on page 7-3 for an
example of using this mode to find the forces on a closed-loop system.

Trimming Mode

This is a variant of Forward Dynamics mode that allows you to run the
Simulink trim command on your model. The trim command in turn allows you
to find steady-state solutions for your model (see “Equilibrium Point
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Determination” in the “Analyzing Simulation Results” section of the Simulink
documentation or enter help trim at the MATLAB command line).

Trimming mode inserts a subsystem and an output port at the top level of your
model. These blocks output signals corresponding to the constraints on the
system represented by your model. Configure the trim command to find
equilibrium points where the constraint signals are 0. This ensures that the
equilibrium points found by the trim command satisfy the constraints on the
modeled system. See “Constrained Example: Four-Bar System” on page 7-18
for an example of using this mode to find the equilibrium points of a
constrained system.

Setting Assembly Tolerances
The linear and angular assembly tolerance specify the precision with which:

* A model must specify the initial locations and angles of a system’s joints.

¢ SimMechanics must solve the initial positions and angles of a model’s
unassembled joints.

Simulink checks the locations and angles of a model’s assembled joints during
the model initialization phase of a simulation. If any of the joint locations or
angles fail to meet the corresponding assembly tolerances, Simulink halts the
simulation and displays an error message. If this happens, you should check
your model to ensure that it specifies the locations and angles of its assembled
joints to the precision specified on the Parameters pane of the Mechanical
Environment Settings dialog. If not, either change the locations and angles
that fail to meet the assembly tolerances or increase the tolerances themselves.

Choosing a Constraint Solver

If your model contains implicit or explicit constraints on a system’s motion,
SimMechanics uses one of the three possible constraint solvers to find a
solution to its equations of motion that meet the constraints:

® Stabilizing solver
¢ Tolerancing solver

® Machine precision solver

The following sections describe these solvers.

5-5



5 Running Mechanical Models

5-6

Stabilizing Constraint Solver

Adds a self-correcting term to the state equations to be solved that stabilizes
the numerical solution, i.e., causes it to gravitate toward, rather than drift
away from, the actual solution. SimMechanics uses this solver by default. It is
typically faster than the other solvers, but can stop at a solution that exceeds
the model’s assembly tolerances. If assembly tolerance errors occur during the
simulation, use one of the following solvers instead.

Tolerancing Constraint Solver

Solves the constraints on the system’s states to the tolerance that you specify.
Specifically the solver stops refining the numerical solution of the state
equation when the difference between two successive solutions satisfies the
equation

|error| < |rtol * x + atol |

where error is the difference between successive solutions, rtol is the relative
constraint tolerance (see “Constraint relative tolerance” on page 5-10), x is the
state to be solved, and atol is the absolute constraint tolerance (see “Constraint
absolute tolerance” on page 5-10).

Use this solver if you plan to run the simulation in Kinematics mode and you
want to trade off simulation accuracy for simulation time. Relaxing the
constraint solver tolerances generally reduces the time required to simulate
the model. Decreasing the tolerances increases the accuracy of the simulation
but also increases the time required to simulate the model.

Machine-Precision Constraint Solver

Solves the constraints to the numerical precision of the computer on which the
simulation is running. Select this solver if you want to obtain the most accurate
simulation permitted by the computer, regardless of simulation time.
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Mechanical Environment Settings Dialog Box

The Mechanical Environment Settings dialog box allows you to choose
simulation options that are specific to models using SimMechanics blocks. To
display this dialog, select Mechanical environment from the model’s
Simulation menu. The Mechanical Environment Settings dialog appears.
The dialog groups SimMechanics global settings onto four tabbed panes:
Parameters, Constraints, Linearization, and Visualization. The following
sections explain the settings on each pane.

<} Mechanical Environmen —1of x|

Description

Defines simulation properties for the mechanical components in this model.

Parameters | Constraints | Linearization | “isuslization

Analysis type: type of solution representing machine's motion.

Tolerances: maximum permissible misalignment of machine's joints.

Gravity vector and units: I[D -8.810] Im.l’s"2 j

Analysis type: IForward dynamics j

Linear aszembly tolerance: |1 e-3 Im j

Angular assembly tolerance: |1 e-3 Irad j
0K, | Cancel | Help | Apply |

Parameters Pane
This pane includes the following simulation settings.

Gravity vector and units

The value of this parameter is a MATLAB vector that specifies the magnitude
and direction of gravitational acceleration in the model’s world coordinate
system. The adjacent list box specifies the units that the vector represents. The
default vector is [0 -9.81 0]. The default units are m/s? (meters per square
second). Use the menu to the right if you want to reset the units.
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Analysis mode

Specifies the type of analysis to be performed during the simulation. Choose
one from the menu. See “Choosing an Analysis Mode” on page 5-4 for more
information.

Analysis Mode Description

Forward dynamics Computes the positions and velocities of the system’s
bodies, given forces, torques, and initial conditions.
This is the default mode.

Inverse dynamics Computes the forces and torques required to produce
the specified motions of an open system (see
“Open-Topology Example: Double Pendulum” on
page 7-7).

Kinematics Computes the forces and torques required to produce
the specified motions of a closed-loop system (see
“Constrained Example: Four-Bar System” on
page 7-18).

Trimming Variant of Forward Dynamics mode to be used with
the Simulink trim command to determine
steady-state or other points in the state space of a
system (“Trimming SimMechanics Models” on
page 7-12).

Linear assembly tolerance

Maximum position error allowed between bodies connected by prismatic joints.
The default is 1e-3 m. Use the menu on the right to set the units. See “Setting
Assembly Tolerances” on page 5-5 for more information.

Angular assembly tolerance

Maximum angular error allowed between bodies connected by revolute joints.
Default is 1e-3 rad. Use the menu on the right to set the units. See “Setting
Assembly Tolerances” on page 5-5 for more information.



Mechanical Environment Settings Dialog Box

Constraints Pane

This pane contains settings for models that contain constraint or driver blocks.

<} Mechanical Environment Y - o] x|

"Descripﬁon

Defines simulation properties for the mechanical components in this model.

Parameters ~ Constraints | inearization | ‘isualization

Solver type: how constraints are interpreted. Tolerances: how
closely constraints are satisfied. Robust singularity handling: better
accuracy near kinematic singularities st grester computational cost.

Constraint solver type: IStabiIizing j
Constraint relstive tolerance: |1 e-d
Constraint ahsolute tolerance; |1 e-d

™ Use robust singularity handling

™ Show automatically cut joints

0K | Cancel | Help Apply

Constraint solver type

Type of solver used to solve constraints on the mechanical system’s states
specified by the model’s constraint and driver blocks. Choose one from the
menu. See “Choosing a Constraint Solver” on page 5-5 for more information.

Solver Type Description

Stabilizing Adds a self-correcting term to the state equations to
be solved that stabilizes the numerical solution, i.e.,
causes it to gravitate toward, rather than drift away
from, the actual solution. This is the default.

Tolerancing Solves the constraints on the system’s states to a
specified degree of accuracy.

Machine precision  Solves the constraints to the numerical precision of
the computer on which the simulation is running.
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Constraint relative tolerance

The relative tolerance used by the Tolerancing constraint solver to determine
when to stop refining a solution. Default is 1e-4. See “Tolerancing Constraint
Solver” on page 5-6 for more information.

Constraint absolute tolerance

The absolute tolerance used by the Tolerancing constraint solver to determine
when to stop refining the solution of a model state. Default is 1e-4. See
“Tolerancing Constraint Solver” on page 5-6 for more information.

Use robust singularity handling

Select this check box if you want Simulink to take extra steps to handle
singularities in a system’s equations of motion. This option increases the
length of time required to solve a system’s equations of motion regardless of
whether they have singularities. Hence, you should select this option only as a
last resort, i.e., only if Simulink ODE solvers cannot otherwise solve the
system’s equations of motion or require an excessively long time to do so. See
“Handling Singularities” on page 5-3 for more information.

Show automatically cut joints

Selecting this check box causes Simulink to mark the icons of Joint or
Constraint/Driver blocks that it cuts during simulation of the model. See
“Cutting Closed Loops” on page 4-32 for an additional discussion.

_— [1: Automatically cut joint mark

X,

Linearization Pane

This pane allows you to configure the state perturbation used by the Simulink
model linearization command, 1inmod, when linearizing a SimMechanics
model (see “Linearizing SimMechanics Models” on page 7-23).



Mechanical Environment Settings Dialog Box

<} Mechanical Environment - o] x|

Description

Defines simulation properties for the mechanical components in this model.

Parameters | Constraints ~ Linearization | ‘isualization

Lineatize along nominal trajectory with perturbation in MKS (S units.
Fixed perturbation (faster) is absolute. Adaptive perturbation (slower)
iteratively perturbs state to obtain more accurate approximation.
State perturbation type: IAdapﬁve j
Perturbation size: |1 -3

ok | Cancel | Help | Apply

State perturbation type

Specifies the type of state perturbation used by 1inmod to linearize a
mechanical model. The default is Fixed.

® Adaptive recomputes the size of the perturbation used at each step in the
linearization process to ensure accurate computation of the linearization
coefficients. It starts with the entry in the Perturbation size field as an
initial guess.

® Fixed uses the perturbation size specified in the Perturbation size field for
every step.

Fixed perturbation is usually faster but can also be less accurate than adaptive
perturbation. You should choose the fixed option only if the adaptive option
takes too long and you are willing to devote time to finding, either analytically
or by trial and error, a fixed perturbation size that produces an accurate
linearization of your model. If you choose the fixed option, you should check its
results against the linearization produced by the adaptive option.

Perturbation size

Specifies the relative size of the perturbation used by the Fixed perturbation
option. Specifies the relative size of the initial guess perturbation used by the
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Adaptive perturbation option. The perturbation size is relative to the size of
the state being perturbed. The default is 1e-5.

Visualization Pane

This pane enables you to select various visualization options for your model.
For additional information on visualization, see Chapter 6, “Visualizing and
Animating Machines.”

+) Mechanical Environment Se! - o] x|

Defines simulation properties for the mechanical components in this model.

"Descripﬁon

Parameters | Constraints | Linearization — isuslization |

To draw a geometrical representation of the machine, select "Draw
machine in initial state." To animate the machine while running the:
madel, select "Animate machine during simulation.”

Drawy machine using: IMATLAEI Graphics

[
[

Represent bodies as: IConvex hullz

™ Drave machine in initial state

Update machine: IWhen diagram changes VI

™ Animate machine during simulation

0K | Cancel | Help | Apply

Draw machine using

Specifies the visualization tool that Simulink uses to render your model when
you are building and/or simulating the model. If the Virtual Reality Toolbox is
installed on your system, the adjacent menu allows you to choose between
MATLAB Graphics or the Virtual Reality Toolbox. If the Virtual Reality
Toolbox is not installed on your system, Simulink uses MATLAB (Handle)
Graphics to render your model.

Represent bodies as

Specifies the type of shape used to render the model’s bodies. You can choose
Equivalent ellipsoids or Convex hulls. See “Rendering Body Shapes in
SimMechanics” on page 6-5.



Mechanical Environment Settings Dialog Box

Draw machine in initial state

Selecting this check box causes Simulink to render the model in its initial state
when you select the Apply or OK button on the Mechanical Environment
Settings dialog and at the times specified by the Update machine option.

Update machine

Specifies when Simulink updates the initial state rendering of your model. The
menu options are

® When diagram changes (whenever you change your block diagram)

® Only at Update diagram (whenever you select Update diagram from the
model’s Edit menu)

Animate machine during simulation

Selecting this check box causes Simulink to animate the model’s visualization
during simulation, i.e., recreate the rendering of the model at each time step to
show the current positions of the model’s bodies.
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How SimMechanics Works

You might find a brief overview of how SimMechanics works helpful for
understanding and fixing errors, a topic discussed in “Troubleshooting
Simulation Errors” on page 5-16.

There are four major steps of machine simulation. The first two occur before
SimMechanics actually starts machine motion.

® “Model Validation”

® “Machine Initialization”

® “Force Analysis and Motion Integration” on page 5-15
® “Stiction Mode Iteration” on page 5-15

Model Validation

SimMechanics first checks your data entries from the dialogs and the local
connections among neighboring blocks. It then validates the Body coordinate
systems; the joint, constraint, and driver geometries; and the model topology.

Machine Initialization

The assembly tolerances of Joints that you manually assembled are checked
next.

SimMechanics then cuts each closed loop once. An invisible internal constraint
replaces each cut Joint, Constraint, or Driver block. SimMechanics checks all
constraints and drivers for mutual consistency and eliminates redundant
constraints.

Any Joint Initial Condition Actuators now impose initial positions and
velocities, changing body geometries from their dialog box configurations as
necessary. SimMechanics then finds an assembly solution for disassembled
joints and initializes them in position and velocity. Assembly tolerances are
checked again.

A “sticky” joint primitive, actuated by a Joint Stiction Actuator, can be in one
of three stiction modes: locked, waiting, or unlocked. SimMechanics finds a
mutually consistent set of stiction modes for all sticky joints.



How SimMechanics Works

Force Analysis and Motion Integration

In the Forward Dynamics or Trimming analysis modes, SimMechanics now
begins the solution of machine motion by applying and integrating external
forces and torques, stepping in simulation time. It maintains assembly,
constraint, and solver tolerances and checks constraint and driver consistency.
It also detects whether, within one Joint block, distinct joint primitive axes
align and destroy an independent DoF (joint axis singularity).

In the Inverse Dynamics and Kinematics modes, SimMechanics now applies
motion constraints, drivers, and actuators to find the machine motion and
derive forces and torques. It also checks tolerances and consistency and detects
singular alignment of joint primitives.

Stiction Mode lteration

If stiction is present, SimMechanics checks at each time step whether the
sticky joints transition from one stiction mode to another, then checks for
mutual consistency of locked and unlocked sticky joint primitives across the
whole machine.
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Troubleshooting Simulation Errors

SimMechanics simulations can stop before completion with one or more error
messages. You might find the previous section, “How SimMechanics Works” on
page 5-14, useful for tracing errors. Some common errors also appear in
“Modeling Machines” on page 4-2 and “Checking Model Validity” on page 4-64.
This section discusses generic error types.

Most errors and error-fixing strategies fall into broad categories. These
groupings are reflected in the keywords occurring in the error messages that
SimMechanics displays. The following sections summarize these groupings.
® “Data Validation Errors”

¢ “Ground and Body Geometry Errors”

® “Joint Geometry Errors” on page 5-17

¢ “Block Connection and Topology Errors” on page 5-17

® “Motion Singularity and Inconsistency Errors” on page 5-18

® “Analysis Mode Errors” on page 5-21

Data Validation Errors

Every numerical entry you make in SimMechanics must be a real numerical
expression or MATLAB equivalent. Spatial vectors are 3-vectors, such as [3 4
5]. Spatial tensors are 3-by-3 matrices, such as rotation matrices and the
inertia tensor.

Note You can specify a two-dimensional curve in the Point-Curve Constraint
block with 2-vectors.

Ground and Body Geometry Errors

Every model must have a least one Ground block. Every Body block must have
at least one Body CS, defined at the body’s center of gravity (CG). You must
directly or indirectly define the Body coordinate systems (CSs) of a machine
relative to a Ground or to World. You cannot enter cyclic Body CS definitions.
For example, defining CS3 relative to CS2, defining CS2 relative to CS1, then
defining CS1 relative to CS3, results in a definition both cyclic and missing any
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reference to a Ground or World. You could break the cycle by referencing CS1
to a Ground or to World.

To be rendered in visualization, a Body must be connected to at least one Joint
that is connected to the rest of the machine. You cannot visualize with
equivalent ellipsoids a body whose principal inertial moments do not satisfy
the triangle inequalities. (See “Rendering Body Shapes in SimMechanics” on
page 6-5.)

Joint Geometry Errors

The geometric configuration of joints, constraints, and drivers can conflict with
assembly requirements and restrictions on certain blocks.

Assembly Violated

Assembled joints must satisfy assembly tolerances on their connected Body
CSs at all times. Disassembled joints assembled at machine initialization must
also satisfy assembly tolerances during the simulation.

Zero Massless Connector Distance

The initial distance between two Body CS origins connected by a massless
connector must be nonzero. The massless connector holds the distance between
two Body CS origins constant during motion.

Composite Joints: Restrictions Among Primitives

Certain composite Joint blocks place restrictions on their primitive joint axes.
For example, Bearing must have its prismatic axis P1 aligned to its third
revolute axis R3.

Block Connection and Topology Errors

General rules on how to connect SimMechanics blocks are discussed in the
“Modeling Mechanical Systems” chapter. In particular, consult that chapter’s
sections:

¢ “Modeling Machines” on page 4-2
¢ “Checking Model Validity” on page 4-64

Some restrictions are properties of individual blocks, as explained in their
reference pages. See the “SimMechanics Block Reference.”
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Motion Singularity and Inconsistency Errors

Motion simulation errors often occur because of singularities or dividing by
very small numbers. SimMechanics can integrate certain singularities, at a
cost (see “Choosing an ODE Solver” on page 5-2).

Inconsistencies in motion arise from misapplication of constraints, drivers, and
actuators and from conflicting stiction requirements.

Zero Masses and Moments of Inertia

A body moving on a prismatic axis must have nonzero mass if you actuate it
with forces. A body rotating about a revolute axis or pivoting about a spherical
must have nonzero inertial moments about the axis or pivot if you actuate it
with torques. If you want a massless rigid body, consider using a Massless
Connector from the Joints/Massless Connectors sublibrary.

Note You can use point bodies (nonzero mass but zero moments) in
SimMechanics, if the connected revolute axes and spherical pivots are
dislocated from the body. Although the moments are zero about a point body’s
CG, the displacement of the body from the axis or pivot shifts the moments
from zero to nonzero values.

Alignment of Distinct Primitives

Within a single Joint block, two distinct prismatic axes or two distinct revolute
axes should never align during the simulation. If either occurs, a translational
or rotational DoF is lost, and SimMechanics cannot determine the subsequent
motion. An example of primitive axis alignment singularity is “gimbal lock.”
Two of the three revolute primitive axes in the Gimbal block become parallel,
reducing the number of independent DoF's in the Joint from three to two.

No Degrees of Freedom

Your machine cannot move if it has no degrees of freedom. Each Constraint,
Driver, and motion-actuating Actuator block you add to a model reduces the
number of independent DoFs. (See “Counting Degrees of Freedom” on

page 4-67.) Cure such errors by removing one or more of these blocks from your
model, until you have at least one independent DoF'.
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Redundant Constraints

Some constraints can restrict what another constraint is already restricting.
Fix these errors by identifying and removing the redundancies.

Violated Constraints

Some machine motions or simulations might not be able to maintain assembly
tolerances at a particular simulation step while simultaneously satisfying the
constraints. One or more joints become disassembled, followed by an error.

You can correct this situation in several ways. First, identify the joint,
constraint, or driver causing the error and examine its physical configuration
when the error occurs to isolate the conflict. Then try any combination of these
steps:

® Decrease the ODE solver tolerances.

¢ Switch to a more robust ODE solver.

® Decrease the constraint solver tolerances.

¢ Switch to the machine precision constraint solver.

¢ Increase the assembly tolerances.

See “Choosing an ODE Solver” on page 5-2, “Choosing a Constraint Solver” on
page 5-5, and “Constraints Pane” on page 5-9.

SimMechanics tries to harmonize your choices of ODE solver and solver
tolerances, constraint solver and tolerances, and assembly tolerances in this
dynamic hierarchy:
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Simulink
Time Step
Impose Constraint Check
C’ Solver & Tolerances | Assembly
Tolerances
Simulink

\ Solver & Tolerances

Conflicting Actuators
You cannot put more than one actuator on a joint primitive.

Note You can simultaneously place an initial condition actuator and a
force/torque actuator on a joint primitive.

The Joint Stiction Actuator block does accept an input signal for nonfrictional
forces/torques, which the block adds to the stiction.

Sticky Joints in Conflict

If your machine has two or more stiction-actuated (“sticky”) joints, a conflict
among them can put SimMechanics into an infinite loop and prevent
determination of the machine motion. Or one locked joint can prevent the other
joints, sticky or not, from moving. The machine stops moving.
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For example, one sticky joint becomes unlocked and requires the other to lock,
which then requires the first to lock.

Remove these conflicts by removing one or more stiction actuators or by
changing the Joint Stiction Actuator locking thresholds.

Analysis Mode Errors

Certain restrictions apply to the analysis modes presented in “Choosing an
Analysis Mode” on page 5-4. Consult individual analysis modes for more:

* “How SimMechanics Works” on page 5-14
¢ “Trimming SimMechanics Models” on page 7-12
¢ “Linearizing SimMechanics Models” on page 7-23
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Generating Code

You can use SimMechanics together with Real-Time Workshop to generate C
code from your mechanical models and enhance simulation speed and
portability. Certain features of Simulink itself make use of generated or
external code. Some SimMechanics features are restricted when you translate
a model into code. See “Limitations” on page 5-25.

Note Code generated from SimMechanics models is intended for rapid
prototyping and hardware-in-the-loop applications. Production and embedded
use of the generated code is not recommended.

Using Code-Related Products and Features

Simulink, SimMechanics, Real-Time Workshop, and xPC Target, using five
code-related technologies, enable you to link existing code to your models and
generate code versions of your models.

Code-Related Task Component or Feature

Link existing code written in C or other Simulink S-functions to generate
supported languages to Simulink models customized blocks

Speeding up Simulink simulations Simulink Accelerator mode*
Generate stand-alone fixed-step C code Real-Time Workshop Generic
from Simulink models Real-Time Target (GRT)
Generate stand-alone variable-step C code Real-Time Workshop Rapid
from Simulink models Simulation Target (RSIM)
Convert Simulink model to C code and Real-Time Workshop and xPC
compile and run it on a target PC Target

*Accelerator mode speeds up simulations within Simulink by using selected
Real-Time Workshop components. You do not need to have Real-Time
Workshop installed to take advantage of this feature.



Generating Code

The following diagram summarizes the product and feature flow of generating
code from models and linking existing code to models.

Simulink
Accelerator Mode
Simulink Generic real-time:
Performance Tools ; fixed-step,
i ! / stand-alone C code
( ) Real-Time
TR Workshop \ Rapm" simulation:
in the Simulink and variable-step,
Physical Modeling stand-alone C code
environment
\ XPC Target
simulink Stand-alone C code
S-functions for target PC kernel

Link to external code

Related Simulink Code Generation Documentation

Consult the documentation for Real-Time Workshop, xPC Target, and
Simulink's Accelerator mode and S-function feature for general information on
installing and using these products. See “Limitations” on page 5-25 for
important restrictions when using SimMechanics with these features.

How SimMechanics Code Generation Differs from
Simulink

In general, using the code generated from SimMechanics models is similar to
using code generated from normal Simulink models. There are some minor
differences.

SimMechanics and Normal Simulink Code Generated Separately

Real-Time Workshop generates code from the SimMechanics blocks separately
from the normal Simulink blocks in your model. The generated SimMechanics
code does not pass through model. rtw or the Target Language Compiler®. All
the code generated from a single model ends up in the same directory, however.
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Locating and Changing Run-Time Parameters

As with code generated from any Simulink model, you can change the
nontunable run-time parameters in the global parameter data structure
named rtP in the model’s generated C source files. You can then recompile the
source without having to regenerate the code from your SimMechanics model.
You can also use these parameters with target-specific run-time parameter
utilities such as rsimgetrtp. Run-time parameters for each machine are pooled
into a single vector in the rtP structure.

In addition to the usual C and header files, SimMechanics generates special
files, rt_mechanism_data.h and rt_mechanism_data.c, containing separate
data structures and functions for the run-time parameters. A special data
structure for each machine explicitly associates each parameter with a specific
SimMechanics block. One special function unpacks a machine’s pooled
run-time parameters from rtP into the special header file. The other special
function repacks the parameters.

SimMechanics Code Generated From Reusable Subsystems

Reusable subsystems in Simulink reuse code that is generated once from the
subsystem. Code generated from SimMechanics models placed in reusable
subsystems is rebuilt each time the subsystem is called, rather than being
generated once and reused.



Limitations

Limitations

Some Simulink features and tools do not work with models containing
SimMechanics blocks. Others work with SimMechanics models but only on the
normal Simulink blocks in those models.

Changing Block Properties

You cannot change the block properties of SimMechanics blocks at the
command line.

Unsupported Simulink Tools
The following tools do not work with SimMechanics models.

e External mode
e Profiler

Simulink Tools Working Only With Normal Simulink Blocks

Some Simulink tools and features do not work with SimMechanics blocks.

¢ Execution order tags do not appear on SimMechanics blocks.
¢ SimMechanics blocks do not invoke user-defined callbacks.

® You cannot tune SimMechanics block parameters.

® You cannot set breakpoints on SimMechanics blocks.

¢ Reusable subsystems cannot contain SimMechanics blocks.

® You cannot use the Fixed-Point Settings interface with SimMechanics
blocks.

¢ The Report Generator does not generate information on SimMechanics
blocks.

® The S-Function Target tool cannot generate an S-function from a subsystem
containing SimMechanics blocks.

Restrictions with Generated Code

Stiction implemented with Joint Stiction Actuator blocks requires algebraic
loops iterated at one time step to detect discrete events. In generated code
versions of models with stiction, the iteration to find locking and unlocking of
joints occurs over multiple time steps.
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Visualizing and Animating
Machines

You can visualize your machine’s bodies in SimMechanics with two different tools. One tool is based
on Handle Graphics, a built-in feature of MATLAB. The other uses an internal SimMechanics
interface to the optional Virtual Reality Toolbox. You can also construct your own virtual worlds and
interface them to SimMechanics.

Choosing Visualization Options in Different ways that SimMechanics renders and animates

SimMechanics (p. 6-2) component rigid bodies of machines
Rendering Body Shapes in Understanding and choosing body shapes for machine
SimMechanics (p. 6-5) components visualizations

Viewing Machines with Handle Viewing machine bodies in SimMechanics with MATLAB

Graphics (p. 6-10) Handle Graphics

Viewing Machines in Virtual Viewing machine bodies in SimMechanics with Virtual
Reality (p. 6-24) Reality Toolbox

Creating Custom Machine Building an interface from SimMechanics to an

Visualizations (p. 6-30) externally rendered virtual reality machine



6 Visualizing and Animating Machines

Choosing Visuadlization Options in SimMechanics

You need to make three choices to set up SimMechanics visualization:

¢ Visualize the machine’s initial state and/or animate its motion

¢ Pick which kind of body shape for the machine components you want, convex
hulls or equivalent ellipsoids

® Render the scene with MATLAB Handle Graphics or Virtual Reality Toolbox

You implement these choices via the Mechanical Environment Settings
dialog box. From the Simulink menu bar, select Simulation, then Mechanical
environment. The Mechanical Environment Settings dialog opens. Click the
Visualization tab. The Visualization pane appears below the tab. Keep this
dialog open so you can see the visualization options. See “Mechanical
Environment Settings Dialog Box” on page 5-7 for more information.

<} Mechanical Environment _ o x|

Description

Defines simulation properties for the mechanical components in this model.

Parameters | Constraints | Linearization — isuslization |

To draw a geometrical representation of the machine, select "Draw
machine in initial state." To animate the machine while running the:
madel, select "Animate machine during simulation.”

Drraver machine using: IMATLAEI Graphics j
Represent bodies as: IConvex hullz j
[ Draw machine in initial state

Update machine: IWhen diagram changes vI

[ &nimate machine during simulstion

Ok | Cancel | Help | Apply |

The sections of this chapter guide you to making the appropriate visualization
choices within SimMechanics. The present section explains the why and how
of visualizing the machine’s initial state and animating its motion:

® “Uses of the SimMechanics Visualization Tools” on page 6-3
® “Setting Up Static and Dynamic Visualization” on page 6-4
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You can find more on the body shapes in the next section:

¢ “Rendering Body Shapes in SimMechanics” on page 6-5

These two sections spell out the procedures for setting up the two
SimMechanics visualization tools:

® “Viewing Machines with Handle Graphics” on page 6-10
® “Viewing Machines in Virtual Reality” on page 6-24

You can bypass the built-in visualization tools of SimMechanics by creating a
virtual reality world of your own design to represent your machine’s bodies.
With Virtual Reality Toolbox, you build a custom interface from your model to
the virtual world and animate its virtual bodies:

® “Creating Custom Machine Visualizations” on page 6-30

Uses of the SimMechanics Visualization Tools

The visualization tools of SimMechanics serve two distinct purposes, static and
dynamic visualization. In both cases, you can change your observer viewpoint
and navigate through the scene. You can change the body properties of the
visualization only by changing the corresponding Body blocks in your model.
Changing a body’s mass, inertia tensor, and coordinate systems can change its
visual rendering.

Static Rendering

Static rendering of machines in their initial state, during construction. Either
choice is valid:

® Open the visualization before or while you build your model. You render each
body as you add it to your model. Having a visualization tool open during
model building lets you keep track of your machine parts and how they are
connected. You can see unphysical or mistaken constructions before you
finish the model.

® Open the visualization after you finish the model. All the bodies in the model
appear together.

Dynamic Animation

Animation of machines while the SimMechanics model is running. Use this
feature to watch the model’s dynamics in three dimensions and visualize
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motions and relationships more easily than is possible with Scope blocks alone.
Chapter 5, “Running Mechanical Models” presents the steps for running
SimMechanics models.

Setting Up Static and Dynamic Visualization

Begin configuring the Visualization pane of the Mechanical Environment
Settings dialog box:

1 You can separately choose static and/or animated visualization:

= Render the static machine in its initial state by selecting the Draw
machine in initial state check box.

= Animate the machine during simulation by selecting the Animate
machine during simulation check box.

2 Choose the updating mode in the Update machine pull-down menu. The
visualization tools reflect changes to the Simulink model by either
immediate or delayed update:

= The When diagram changes option updates the visualized machine
immediately upon changes to the Simulink model. For complex models,
frequent visualization updates can be slow.

= The Only at Update diagram option ignores changes you make to the
model until you choose Update diagram in the model window Edit menu.
This option allows you to update the visualization in one step after making
a large number of changes.

3 Implement your visualization choices at any time by clicking Apply.
Clicking OK applies your choices and closes the dialog box. A visualization

window opens.

4 Refresh the entire visual scene at any time by selecting Update diagram
from the model window Edit menu.
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Rendering Body Shapes in SimMechanics

The visualization tools render the bodies in either of two shapes:

¢ Equivalent ellipsoid for each body, based on its mass properties and center
of gravity (CG) position, explained in “Equivalent Ellipsoids” on page 6-5

¢ Convex hull for each body, based on its Body coordinate systems (CSs),
explained in “Convex Hulls” on page 6-8

Choosing the Body Shape

You choose the body rendering in the Visualization pane, with the Represent
bodies as menu. Choose Equivalent ellipsoids or Convex hulls. The default
is Convex hulls.

Equivalent Ellipsoids

The inertia tensor I of a rigid body is real and symmetric, so it has three real
eigenvalues (I1,15,13) and three orthogonal eigenvectors. These eigenvectors
are the principal axes of the body. In the coordinate system defined by those
axes, the inertia tensor is diagonal. The trace of the inertia tensor, Tr(I) = 17 +
I + I3, is the same in any coordinate system with its origin at the body’s center
of gravity (CG).

Every rigid body has a unique equivalent ellipsoid, a homogeneous solid
ellipsoid of the same inertia tensor. The ellipsoid surface is given by

SRR

The three parameters (ay, ay, a,) are the generalized radii of the ellipsoid. For
axisi =1,2,3

aj = J5((Tr(I)-2I;)/(2m))
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Triangle Inequalities
The principal moments (I1,15,13) must satisfy the triangle inequalities:

12+13211
13+11212
Il+12213

Violation of the triangle inequality for I; leads to an unphysical imaginary
generalized radius q;.

Caution Visualizing the equivalent ellipsoids of bodies whose principal
moments do not satisfy the triangle inequalities leads to a SimMechanics
error.

Ellipsoids with Special Symmetry

In general, all three I;, i = 1,2,3, are unequal. Such a body is an asymmetric top.
If two of the three I; are equal (double degeneracy), the body is a symmetric top.
The third axis is the axis of symmetry. If all three I; are equal (triple
degeneracy), the body is a spherical top and dynamically equivalent to a
homogeneous sphere.

Reduced-dimension Ellipsoids

In special cases, the equivalent ellipsoid reduces to a planar, linear, or point
figure.

Let (i,j,k) 1label the three axes (1,2,3) = (x,y,2z) in any order.

® For a true ellipsoid, with nonzero volume, all the a; are nonzero. The triangle
inequalities are strict inequalities in this case:

I.+1, >1.
J k71
Ik+I.>I.

rJ

Ii+Ij>Ik
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® For an ellipse, with zero volume but nonzero area, one a; = 0 and the other
two aj, a;, are nonzero. One of the triangle inequalities becomes an equality:

I.+1. =1.
J Tk l
Ik+I->I-

tJ

Ii+Ij>Ik

® For a line, with zero volume and area but nonzero length, two a;, aj=0 and
the third a; is nonzero. Two of the triangle inequalities become equalities:

I.+1, =1.
JTR
Ik+1i_1j
Ii+Ij>Ik

Equivalently, [; = I; are nonzero and I, = 0.

® For a point, with no spatial extent, all three a; vanish. All three triangle
inequalities become equalities:

I.+1, =1.
JUR i
Ik+Ii —IIJ-
Ii+1j— k

Equivalently, all three I; vanish.

Example: Simple Pendulum Rod

Consider the simple pendulum rod in “Visualizing a Simple Pendulum” on
page 2-30. You can open the model by entering mech_spen at the command line.

The rod length L = 1 m, and its radius r = 1 cm. The inertia tensor is

_mrz ]
o 00
Ixx 0 O 9
= L
0 Iyy 0| = | 0 ’”1—2 0
0 0 Izz 5
mL
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Because the rod has an axis of symmetry, the x-axis in this case, two of its three
principal moments are equal: Iy, =1,,, and two of its three generalized radii are
equal: ay = a,. The rod is a symmetric top and, since r is much smaller than L,
its equivalent ellipsoid is almost a line of zero volume and area.

The generalized radii of the equivalent ellipsoid are a, = v5/3(L/2) = 0.646
manday=a,= J5(r/2) =1.12 cm. This is the rod rendered in virtual reality:

Ellipsoid surface Center of gravity

h_=spen/Bady

Convex Hulls

Every Body has at least one Body coordinate system (CS) at the CG. A Body
also has one or more extra Body CSs for the attached Joints, as well as possible
Actuators and Sensors. Each Body CS has an origin point, and the collection of
all these points, in general, defines a volume in space. The minimum
outward-bending surface enclosing such a volume is the convex hull of the Body
CSs, and this is the alternative way SimMechanics has to render a body.

To enclose a nonzero volume, the set must have at least four non-coplanar Body
CSs. Three non-collinear Body CSs are rendered instead by a triangle, and two
non-coincident origins by a line. One is displayed just as a point. (The
minimum one Body CS would be just the CG CS.) Four or more coplanar origins
are rendered by a triangle, three or more collinear origins are rendered by a
line, and two or more coincident origins are rendered by a point.
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Example: Four Cylinder Engine Crank

Refer to the four-cylinder engine model of the Demos library by entering
mech_fceng at the command line.

Double-click the Engine Block subsystem and note the Crank block
representing the engine crank. This Body block has six Body CSs. Visualize the

engine as convex hulls with Handle Graphics. The large block in your
visualization is this engine crank, and it encloses a nonzero volume.

Four-cylinder engine crank

<) Machine for model: mech_fceng - ol x|
File Edit “iew SimMechanics Insert Tools ‘Window Help

lozdE yAVM/ 2e0
mech_feeng/Engine Block/Crank
0

Z-axis

&
=
o m

0.05 ‘
0.1
0.15
0.2 ‘

025 L.
f-axis :

Engine cylinders

Four Cylinder Engine Example: Engine Crank Convex Hull (Yellow)
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Viewing Machines with Handle Graphics

The Handle Graphics feature for viewing your machine is built into
SimMechanics. It uses a special set of symbols to draw bodies and Body
coordinate systems (CSs). The Handle Graphics window also features special
SimMechanics controls and tools.

The following sections explain the use of Handle Graphics visualization in
SimMechanics:

¢ “Using the Standard Handle Graphics Controls” on page 6-12

® “Interpreting the Special SimMechanics Symbols” on page 6-12

® “Using Special SimMechanics Functions” on page 6-13

Note The Handle Graphics visualization feature is based on the Handle
Graphics tools of MATLAB. Refer to the MATLAB graphics documentation for
a full discussion of Handle Graphics.

This section mainly focuses on features special to SimMechanics Handle
Graphics visualization. Certain standard Handle Graphics features are
disabled or missing in the SimMechanics window.

Choosing Handle Graphics Visualization

You choose this visualization tool in the Visualization pane of the Mechanical
Environment Settings dialog:

1 In the Draw machine using menu, choose MATLAB Graphics.

2 Select the Draw machine in initial state and/or Animate machine during
simulation check boxes.

3 Click Apply or OK. A Handle Graphics window opens.
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J Machine for model: mech_four_bar _||:||1|
File Edit View SimMechanics Insert Tools Window Help —— Menu bar
InDsd& x A2/ 200 e
o \
N 2 aat22Cbzv |9 6D LO Toolbars
loeee B srre v cr a|w
Click On Object To Display Information
QB CE—— ......... R e
UE
i Machine
0.4-" .
2 [ display
0_2_5.. [
06 0.4 02 0 02 0.4 06
Heaxis
[ simeiation Time: 35861 sec Arimtion Fle mech_four_bar avi||———————— Status bar

Handle Graphics Window Displaying a SimMechanics Machine

Changing the Machine Display Refresh Rate

By default, the machine display is updated at every major time step during
simulation. You can change this refresh rate by reconfiguring the Simulink
output options. Taking more sample points makes the animation smoother.
Using fewer sample points leads to a more disjointed animation, but a faster
simulation and a smaller recorded animation file (see “Recording and Playing
Animations” on page 6-20).

Open Simulation parameters in the Simulation menu of your model window.
On the first pane, Solver, under Output options, change the pull-down menu
entry to Produce specified output only. You must now use the Output
times field on the right to specify explicitly how often Simulink should capture
the simulation output. In this field, enter a vector of sample times. The sample
time range must be the same as or lie within the Start time and Stop time
range in Simulation time at the top of the Solver pane.
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If you want a uniform output sampling, use the linspace command to specify
the time range and number of sample points: 1inspace(start-time,
end-time, number-of-points). Example: To sample 200 points from zero to
10 seconds, enter linspace(0,10,200) in the Output times field.

Using the Standard Handle Graphics Controls

The main controls of the Figure Toolbar are standard on all MATLAB Handle
Graphics windows. Refer to the MATLAB Graphics documentation to learn
how to configure Handle Graphics windows and objects.

For SimMechanics model visualizations, the Zoom in, Zoom out, and Rotate
3D buttons are especially useful. Select the button and click in the figure area
to activate the function. Click, hold, and roll the figure to rotate the machine in
three dimensions.

View menu Zoom In Zoom Qut Rotate 3D

<) Machine *r model: mech_spzn
File
DEed&| x A 2 /|

IS saansd

Window Help
~a—— Figure Toolbar

L9 OD %O
i Z | | | \(umern Toolbar

Handle Graphics Window Viewing Controls

The useful Camera Toolbar, also discussed in the MATLAB Graphics
documentation, is enabled by default in SimMechanics. You can enable or
disable it, as well as the Figure Toolbar, from the View menu.

Interpreting the Special SimMechanics Symbols

When SimMechanics calls the internal Handle Graphics window, it uses
special conventions to render the bodies of your machine. You can control some
of these conventions through the special SimMechanics menu (see “Changing
How the Machine Is Displayed” on page 6-16).

The machine bodies are represented by one of the two SimMechanics body
shapes (see “Rendering Body Shapes in SimMechanics” on page 6-5):
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¢ The window displays all the machine’s bodies. If a body has one of these
associated surfaces, the surface is shaded red:

= Equivalent ellipsoid

= Convex hull of one or more surface patches (a triangle of coplanar points
or an enclosing surface of four or more points)

A line convex hull is a black stick figure.

® Surfaces used in marking out enclosed convex hull volumes or coplanar
triangles are tiled with patches.

The rendering uses two special symbols:

¢ The center of gravity (CG) point of each body is marked by a circle-plus
symbol @ .

¢ Each Body CS is marked by coordinate axis triads. The color coding is X-Y-Z
axes = RGB = red-green-blue.

Using Special SimMechanics Functions

You can perform a large number of tasks with the special SimMechanics
menu, submenus, and toolbar:

¢ “Highlighting Bodies and Body Blocks” on page 6-15

¢ “Changing How the Machine Is Displayed” on page 6-16

¢ “Changing Perspective and Window Size” on page 6-19

¢ “Controlling the Simulation from the Window” on page 6-20

¢ “Recording and Playing Animations” on page 6-20

* “Saving and Recalling Display Settings” on page 6-22

Once you open a Handle Graphics window, you have two ways to control the
machine display and implement these tasks:
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¢ Use the special SimMechanics menu in the middle of the menu bar. The
menu contains special items and submenus.

Special SimMechanics menu

<) Machine for mod~'. _... = =nen

Fie Edit Vie

lpsert  Tools  Window  Help

tachine Display r
Wigswpoirt 4
Sirmulation s
Animation »

¥ Enable Model Highlighting

Save Display Setlings..
Load Display Settings...
Restore Default Seffings

Open Yisualization Help

SimMechanics Menu for Handle Graphics Visualization

e Use the buttons in the special SimMechanics toolbar. Every feature on this
toolbar occurs in the special menu, although the reverse is not true. See the
“Summary of the SimMechanics Toolbar” on page 6-22.

=) Machine for model: mech_spen
File Edit “iew SimMechanics Insert Tools ‘Window Help

lDzda@ YA/ 20
: CEEY|? R Special SimMechanics
LSE B T e | % < Toolhar

s aass

aeee|H

SimMechanics Toolbar for Handle Graphics Visualization

Certain options in the SimMechanics menu are enable/disable-selected. By
selecting the item, you either enable it and a check mark appears, or you
disable it and the check mark disappears.
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Other menu items, when you select them, instead trigger an immediate action.

These are the top-level items in the special SimMechanics menu.

SimMechanics Menu Items of the Handle Graphics Window

Menu Item or Function Action or
Group Default

Machine Display Control machine rendering Submenu
Viewpoint Control perspective and window Submenu

and axes size

Simulation Control model simulation Submenu
Animation Record simulation animation Submenu
Enable Model Body-Body block highlighting Enabled
Highlighting
Display Settings Save, load, and restore Immediate
SimMechanics display settings action
Open Open Help browser to this section Immediate
Visualization Help  of SimMechanics documentation action

Highlighting Bodies and Body Blocks
Clicking a body in the Handle Graphics window causes the following:

¢ The rendered body surface changes color from red to yellow.

¢ The Handle Graphics window displays the associated Body block name and
its path on the line just above the machine display.

® The model window comes back to focus with the associated Body block
highlighted in red.

To unhighlight a body, click anywhere in the white area of the machine display.

You can enable or disable the model Body block highlighting from the
SimMechanics menu item Enable Model Highlighting. The default is
enabled. If you disable model highlighting, the associated Body block is not
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highlighted when you click the rendered body. But whether model highlighting
is enabled or disabled, clicking a body in the Handle Graphics window always
highlights the body in yellow.

The mech_four_bar model from the Demos library is shown with Bar2 (the
middle bar) highlighted.

Highlighted Body block ~ Body block name and path  Highlighted Handle Graphics body

<} Machine for model: mech_four_bar
; CF A a|csz My oot File Edit “iew SkoMechanics Insert

T nswa WA A/ 280
J[svsiaszaNezv/dlanleo
Q,)/"Jointsensor1 “@®®.||VI§ITR‘@|(§| S 2 3 l|?;

Ellipsoid of mech_four_bar/Bar2

Bar2

ools  “Window Help

Angle |:

Rewaluted

Four Bar Mec

Y-axis

Ground_2 Simple closed-loop ma
under the influence

e

Handle Graphics Window with Body and Body Block Highlighting

Changing How the Machine Is Displayed

The window displays different symbols to represent the machine. (See
“Interpreting the Special SimMechanics Symbols” on page 6-12.) You can
enable or disable these symbols from the Machine Display submenu. Some
options are grayed depending on which one of the two body renderings you
choose, equivalent ellipsoids or convex hulls (see “Rendering Body Shapes in
SimMechanics” on page 6-5).
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Changing the Machine Display with Equivalent Ellipsoids

In the equivalent ellipsoid rendering, the Machine Display submenu has three
active items:

Centers of Gravity (CGs) Center of gravity of each body
Coordinate Systems (CSs) Body coordinate systems
Ellipsoids Machine bodies

All three are enabled by default. You can disable or reenable any one or more
of these by selecting the items. When an item is disabled, the corresponding
symbols immediately disappear from the machine display in the window.
When an item is reenabled, the corresponding symbols immediately reappear.

Changing the Machine Display with Convex Hulls

In the convex hull rendering, the Machine Display submenu has four active
items:

Wire Frames Outline convex hull of each body
Centers of Gravity (CGs) Center of gravity of each body
Coordinate Systems (CSs) Body coordinate systems

Patch Surfaces Fill body surfaces in red

The Centers of Gravity (CGs) and Coordinate Systems (CSs) items are
enabled by default. These items display the same symbols as they do for the
equivalent ellipsoids.

The Wire Frame and Patch Surface items are also enabled by default. The
wire frame option outlines with thick black lines the convex hull of each body.
The Stewart platform of mech_stewart_trajectory demo illustrates the wire
frame rendering:
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Y-axis

Body coordinate systems Wire frame convex hull outlines

Y-axis
o

Stewart Platform Without (L) and With (R) Wire Frame Convex Hull Outlines

The patch surface option renders the convex hulls as thin black lines and fills
body surfaces in red. A linear 1-D body is rendered as a black stick figure. The
mech_stewart_trajectory model renders the top plate of the Stewart platform
as a 2-D planar figure with red fill and the legs as stick figures:
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Y-axis

Body coordinate systems Thin wire frame Patch surface
convex hulls

Click On Obyject To Display, Information Click\On Object To Display Inffrmation
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Stewart Platform Without (L) and With (R) Patch Surface

Changing Perspective and Window Size

You can change your perspective view of the machine and the size of the
window with the Viewpoint submenu. Selecting a viewpoint immediately
changes your view in the window.

The available automatic perspectives are X-Y Plane, Y-Z Plane, X-Z Plane,
and the trimetric 3-D ( view([1 -1 1]) ). The coordinate axes in SimMechanics
are

+x (rightward)
+y (upward)
+z (out of the screen)

A planar view projects the machine onto the selected plane. The trimetric view
displays the machine from the viewpoint along the axis (1, -1, 1). You can find
any perspective you want manually by using the Rotate 3D feature of the
Figure Toolbar or by rotating the camera from the Camera Toolbar. See
“Using the Standard Handle Graphics Controls” on page 6-12.
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Fit Machine to View immediately resizes the display window and the machine
to fit together. It does not change the display perspective.

Enable Automatic Axis Resize forces SimMechanics to resize the axes and
window to fit the machine motion during an animation. If this option is
disabled, the machine’s bodies can move out of view of the display. The default
is enabled.

Controlling the Simulation from the Window

Certain Simulink model functions are mapped into the SimMechanics menu
so you can use them from the Handle Graphics window. You find these
functions in the Simulation submenu.

You can start a model (if it is not running) and stop a model (if it is running)
from this submenu by selecting Start or Stop. The keyboard shortcut Crtl+T
initiates the same actions, if the Handle Graphics or the Simulink model
window is in focus.

You can update your Simulink model diagram by selecting Update Simulink
Diagram or entering Ctrl+D at the keyboard with the Handle Graphics or
Simulink model window in focus.

You can also enable or disable the display of the simulation running time by
selecting Display Simulation Time in this submenu. The default is disabled.
The simulation running time is shown in the left corner of the status bar at the
bottom of the Handle Graphics window as Simulation Time: ... sec.

Recording and Playing Animations

The Handle Graphics visualization tool allows you to record animations of your
machine simulations. The animations are stored in Audio Video Interleave
(AVI) format. You control animation recording through the Animation
submenu.

To activate animation recording, enable Store in AVI File. The default is
disabled. By default, recorded AVI files are placed in your current MATLAB
directory. (To see your current directory, check the Current Directory browser
or Current Directory field on the MATLAB desktop, or enter pwd at the
command line.) If the name of your Simulink model file is model-name.mdl, the
name of the recorded AVI file is model-name.avi. When you enable animation
recording, this name appears in the right corner of the status bar at the bottom
of the Handle Graphics window as Animation File: model-name.avi.
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SimMechanics first records a MATLAB movie by capturing the machine
display at every major simulation or output time step. Then, in the termination
phase of your simulation, it converts this movie to AVI format and stores it in
the AVI file. A small AVI Conversion window opens to indicate that
conversion and storage are complete and to display the path of the AVI file.
Click OK to close this prompt.

Caution SimMechanics overwrites any existing file with the same name as
the AVI file in the same directory. The AVI file write fails if a file of the same
name that is locked by another application exists in the same directory.

Changing the Storage Directory of the Animation File

If you want to change the directory in which your AVI files are stored, you must
implement the change before beginning the simulation. Change the AVI
storage directory by selecting Choose AVI File Location. The AVI File
Location browser appears. Change to the directory you want the AVI file
stored in, then click Save.

Compressing the Animation File

You can reduce the size of your AVI file by compressing it. Select Compress
AVI File to enable this feature. The default is enabled.

Note AVI compression is available only on the Windows platform.
SimMechanics uses the Indeo 5 compression algorithm, and your AVI player
must be configured to decompress it.

Playing Back the Animation File

You need an AVI-compatible video player to view the recorded file. You can use
the internal MATLAB movie viewer or an external video player.

If you open an AVI file from MATLAB, an Import Wizard prompts you to load
the AVI stream. Click the Play Movie button. The MATLAB Movie Viewer
opens and runs the animation.
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Saving and Recalling Display Settings

As you work with the special SimMechanics Handle Graphics menu, you
might want to save the setting changes that you make. The main menu has
three functions that allow you to save, load, and reset display settings.

Save Display Settings saves the current configuration of SimMechanics
Handle Graphics settings. The settings are stored in a MAT file. By default,
this MAT file is placed in your current MATLAB directory. (To see your current
directory, check the Current Directory browser or Current Directory field on
the MATLAB desktop, or enter pwd at the command line.) If the name of your
model is model-name.mdl, the default settings file is model-name.mat. When
you save the settings, the Save Display Settings browser allows you to change
the directory and name of the file. You can save multiple display settings MAT
files under different names. Using an existing MAT file name overwrites the
existing MAT file.

The name of the last saved MAT file is stored in the Simulink MDL file itself.
(You must save your MDL file in order to save this name.) If you close Handle
Graphics or close the entire MDL file, SimMechanics automatically loads this
last saved MAT file of display settings when you restart Handle Graphics
visualization. If you want to load a different settings MAT file, select Load
Display Settings and choose a file in the Load Display Settings browser.

If at any time you want to revert to the default display settings documented in
this section, select Restore Default Settings.

If you do not choose to store your settings before you close Handle Graphics
visualization, your setting are not saved. Handle Graphics visualization, upon
restarting, reverts to the default settings if the MDL file lacks a name of a
display settings MAT file to load.

Summary of the SimMechanics Toolbar

You can activate many of the special SimMechanics menu functions by
pressing buttons on the special SimMechanics toolbar. The setting changes
initiated by the toolbar are the same as the corresponding menu actions: either
you enable or disable a feature, or you initiate an immediate action.

Hovering your mouse cursor over a toolbar button displays the button’s tooltip
indicating its function. If a menu function is grayed, depending on your choice
of equivalent ellipsoid or convex hull rendering, the corresponding button is
also grayed.
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Display Ellipsoids

Display Patch Surfaces Display Simulation Time

Display Coordinate Systems Update Simulink Diagram

Display Centers of Gravity Start Simulation
Display Wire Frumes—\ Stop Simulation
lsese @ (srg wler %

Fit Machine to View

Viewpoint: 3-D Trimetric

Viewpoint: X-Z Plane

Viewpoint: Y-Z Plane

Viewpoint: X-Y Plane Record AVI Animation

Special SimMechanics Toolbar Functions (Equivalent Ellipsoid Case)
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Viewing Machines in Virtual Reality

The virtual reality feature for viewing your machine requires the separate
Virtual Reality Toolbox. It too symbolizes bodies and Body coordinate systems
(CSs) in a special way. Use of the virtual reality visualization is presented in
this section, in “Interpreting Special Virtual Reality Symbols” on page 6-25 and
“Changing the Observer’s Viewpoint” on page 6-26.

Note This optional feature requires the Virtual Reality Toolbox to be installed
on your MATLAB path. You can use the default toolbox viewer or the blaxxun
Contact viewer (version 4.4) plug-in. Both ship with the toolbox. This user’s
guide assumes that you are using the default Virtual Reality Toolbox viewer.
The blaxxun viewer must be installed separately and works only on Windows
platforms.

Refer to the Virtual Reality Toolbox documentation for full information on
installing the toolbox and using the toolbox viewer. If the Virtual Reality
Toolbox is not installed, the Virtual Reality Toolbox option in the Draw
machine using menu is missing.

Choosing the Virtual Reality Visualization Tool

SimMechanics has an invisible internal interface to the Virtual Reality
Toolbox, activated in the Visualization pane of the Mechanical Environment
Settings dialog as follows:

1 In the Draw machine using menu, choose Virtual Reality Toolbox.

2 Select the Draw machine in initial state and/or Animate machine during
simulation check boxes.

3 Click Apply or OK. The viewer opens with an embedded virtual scene.

What you see in the virtual reality scene is a virtual world containing virtual
objects, the bodies of your machine. The virtual scene displays the bodies along
with their associated CSs.
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Interpreting Special Virtual Reality Symbols

Refer to the tutorial “A Four Bar Mechanism” on page 2-36. Open the
mech_fourbar model from the Demos library and start the virtual reality
visualization.

The machine bodies are rendered with special symbols, as shown in this virtual
scene.

Bodies Body (Ss

Body (Gs World €S axes

Virtual Reality Scene: Four-Bar Mechanism

The major features of virtual reality visualization are as follows:

¢ The virtual scene displays all the machine’s bodies. If a body has an
associated surface,

= Equivalent ellipsoid
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= Convex hull of one or more surface patches (a triangle of coplanar points
or an enclosing surface of four or more points)
the associated surface is red. A line convex hull is a black stick figure.
¢ The center of gravity (CG) point of each body is marked by a Body CG icon,
S .
® The World CS is marked by a large coordinate axis triad and Body CSs by
small triads. The color coding is X-Y-Z axes = RGB = red-green-blue.

Changing the Observer’s Viewpoint

The Virtual Reality Toolbox contains a viewer as the default method for
viewing virtual worlds. This section reviews the features and controls of the
viewer.

The creation, configuration, and removal of virtual objects in the virtual world
is entirely under the control of SimMechanics. You can add, change, or
eliminate a virtual object only by making the corresponding change to the
mechanical model in your Simulink model window.

The user’s view of the virtual world, however, is under your control, through
the viewer control panel at the bottom of the virtual scene.

Hide panel Information

Headlight toggle

Viewpoint control
Navigation wheel  Navigation method ~ Wireframe toggle

Virtual Reality Toolbox Viewer Control Panel

Viewpoint Control

There are three buttons on the control panel that affect the viewpoint of the
scene. The center circular button resets the view to the current viewpoint. This
button is useful when you have been moving about the scene and need to
reorient yourself.
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You can use the right and left arrows associated with viewpoint control to
browse through predefined viewpoints. These buttons are inactive if other
viewpoints are not specified by the author. You can also use the Page Up and
Page Down keys to navigate through these viewpoints.

Control Menu

Access the control menu by right-clicking in the viewer window. You can use
the control menu to specify a predefined viewpoint or change the appearance of
the control panel. You can also control the navigation method, speed, and
rendering of the virtual world. For more information about navigation
methods, see “Navigation” on page 6-28. For more information about
rendering, see “Rendering” on page 6-28.

Changing the Navigation Speed
1 In the viewer window, right-click.
A menu similar to this one appears.
Viewpainks ¥
Panel J
Mawvigaktion #
Rendering *

2 Select Navigation.
3 Select Speed, then Very Slow.

Your navigation speed within the virtual world is much slower than before.

Note Your navigation speed controls the distance you move with each
keystroke. It does not affect animation speed.

Set a higher speed for large machines and a slower speed for more controlled
navigation in smaller machines.
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Rendering

You can change the rendering of the scene through the control panel or the
control menu. The virtual scene is illuminated both by ambient lighting and a
“headlight” shining directly ahead from your viewpoint. The most basic
rendering operation is turning the camera headlight and the lighting of the
scene on or off. When Headlight is off, the scene can appear dark.

The ambient lighting from all directions is controlled by Lighting. When
Lighting is off, the virtual world appears as if lit in all directions. Shadows
disappear and the scene loses some of its three-dimensional quality.

If Transparency is off, transparent objects are rendered as solid objects.

Turning Wireframe on changes the scene’s objects from solid to wireframe
renderings.

Navigation

You can navigate through the virtual scene with either the control panel,
control menu, or your mouse.

Control Panel. The center navigation wheel and two curved buttons on either
side move you about the scene. Experiment by moving backward and forward
and side to side until you become comfortable with the controls.

Control Menu. Right click in the viewer window to access the control menu.
Select Navigation, and the control menu appears.

From this menu, you can reset the viewpoint so that it is pointed straight ahead
by choosing Straighten up. You can also return to the current viewpoint by
choosing Go to current viewpoint.

Mouse 3-D Roll. You can execute a 3-D roll in your viewpoint at any time by
clicking and holding anywhere in the virtual scene and then dragging the
cursor. Your viewpoint rolls in the direction you drag the cursor.

Learning More About Virtual Reality Toolbox

The best way to become comfortable moving around in a virtual world is to
practice with a variety of movement modes and viewpoints. Consult the Virtual
Reality Toolbox documentation for more details on controlling your virtual
reality scene.
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Note to Users of Virtual Reality Toolbox Using the internal
SimMechanics virtual reality feature adds no new blocks to your model.
SimMechanics feeds all virtual reality signals to the virtual scene internally,
and the Virtual Reality Toolbox interface is not visible in the model window.
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Creating Custom Machine Visualizations

Note This section assumes that Virtual Reality Toolbox is installed on your
system and that you are familiar with it and with creating virtual worlds.
Refer to the Virtual Reality Toolbox User’s Guide for full details on installing
and using this toolbox.

You can bypass the visualization features built into SimMechanics and create
a machine animation in a virtual world of your own design. This gives you the
power to animate a more realistic visualization of your machine. You create a
virtual world, populate it with bodies represented as virtual objects using the
Virtual Reality Modeling Language (VRML), then interface the virtual world

with your SimMechanics model. Creating your own virtual animation requires
a new or existing virtual world for your model and an interface between them.

This section explains how to use a separately created virtual world with
SimMechanics:

® “Creating Virtual Worlds for SimMechanics Models”
¢ “Interfacing SimMechanics with Virtual Worlds” on page 6-34

Creating Virtual Worlds for SimMechanics Models

The Virtual Reality Toolbox User’s Guide and VRML books such as Marrin and
Campbell [8] explain how to create virtual objects and assemble them into
virtual worlds. This section highlights the special requirements to make a
virtual world usable as a visualization for a SimMechanics model.

As you create a virtual world populated by virtual bodies, you must create each
component body, then plan and implement the geometry of the machine’s
initial state. Doing this yourself is a major difference from the SimMechanics
virtual reality visualization, where the bodies are created, placed, and oriented
automatically. Use a VRML authoring tool that can read VRML as a native
format to create and edit virtual reality .wrl files. If you are familiar with raw
VRML source code, you can use a plain text editor or the MATLAB editor to edit
the files.

You represent each body by a virtual object encoded in a .wr1 file.You also
create a master .wrl file to represent the virtual world that refers to body .wrl
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files, placing and orienting these body in the larger scene. You can define a
body’s position and orientation with respect to:

¢ The overall virtual world, corresponding to the SimMechanics coordinate
system World

¢ Another body in the machine, corresponding to Body coordinate systems in
SimMechanics

You can nest body references to other bodies in VRML hierarchies, but you
must define at least one body’s position and orientation with respect to the
overall virtual world. Place and orient the bodies in their initial states,
corresponding with the initial state of the SimMechanics simulation.

Each body’s .wrl file contains a hierarchical tree starting with the Transform
node. Among Transform’s fields must be translation and rotation fields to
specify the body’s position and orientation in space. If a body is nested below
another body, its position and orientation are defined with respect to the next
body up the hierarchy.

Creating your own virtual world gives you great flexibility in representing your
machine:

® You can render bodies in as much or as little detail as you want, with shapes,
colors, textures, etc., of your own choosing.

® You can include or omit bodies that you do not animate.

® You can create a computer-aided design (CAD) representation of your
machine and export it into VRML files.

¢ If you only translate a body, you can omit the rotation field from its
Transform node.

¢ If you only rotate a body, you can omit the translation field from its
Transform node.

Example: Viewing Custom External VRML Files for the Conveyor Loader
The demo model mech_conveyor_vr is a modified version of the original
conveyor model mech_conveyor and comes with external VRML files
containing static renderings of the machine parts in their initial positions. This
example uses the V-Realm Builder® VRML authoring tool in the Virtual
Reality Toolbox to view the files.
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1 In the <matlabroot>\toolbox\physmod\mech\mechdemos\ directory, open
these external VRML files with V-Realm Builder:

base.wrl, convmech.wrl, linki1.wrl, link2.wrl, 1ink3.wrl,
link4.wrl, pusher.wrl

2 Click the Test Mode button il in the V-Realm Builder toolbar and view the
complete machine in the Main view. Right-click in this window to configure
the navigation. If the colors seem washed out, toggle off the headlight.

Main view Toggle Headlight

These conveyor parts are more realistic than the equivalent ellipsoids or
convex hulls available with the built-in SimMechanics virtual reality tool:
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3 On the left side of your VRML editor window, examine the node tree of
convmech.wrl that refers to the six VRML files representing each
component body:

v orld

-J=| Background
- Wigwpoint
Ty Link Links
Ty Link2

Ty Link3

Ty Linkd

-y Pusher ——————Pusher
....G{} Base — Base

& Navigationinfo

Virtual world entry

!..

The hierarchy of body position and orientation references is flat in this
model. Each body is separately referenced to the top level of the hierarchy,
New World.
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4 Expand one of the nodes. Each body node has, among others, rotation and
translation fields:

- New World

-] Background

-4 Viewpoint

EN | Link1 transform
------ center

""" [ rotation ——8 — Rotation field
------ scale

------ [ scaleCrientation

------ translation ———Translation field
------ bboxCenter

------ bboxSize

&0 children

The exception is the Pusher transform, which has only a translation field. In
the SimMechanics model, the pusher only translates along one axis.

Interfacing SimMechanics with Virtual Worlds

To animate a body, you need to measure its motion in your SimMechanics
simulation and export that information to the virtual world. This requires
connecting Body Sensor blocks to the Bodies you want to animate in your
model, then creating an interface that animates the virtual bodies with the
body sensor motion signals. “Example: Interfacing the Conveyor Loader Model
and Virtual World” on page 6-36 applies these steps to the mech_conveyor_vr
demo.

Adding and Configuring Body Sensors

Refer to “Sensing Body Motions” on page 4-60 for general information on how
to use Body Sensors. Connect the Body Sensors to Body coordinate systems
(CSs) on the bodies whose motions you want to animate. The Body block
reference discusses how to create and configure Body CSs. You need to take
these special steps to export the signals of a body sensor to your virtual world:
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1 Make sure the Body Sensor’s Body CS reference origin and orientation
follow the body’s defining VRML hierarchy.

Example: You define a new Body CS on a body to connect the Body Sensor.
If you defined the VRML body’s position with respect to the center of gravity
(CG) of a second, neighboring body in your VRML files, you should set the
Translated from origin of field of the new Body CS to the origin of the CG
CS of the second body.

2 In the Body Sensor dialog, select the [x; y; z] Position check box if you want
to animate the body’s translational motion.

Select the [3 x 3] Rotation matrix check box if you want to animate the
body’s rotational motion.

3 Choose the coordinate system in which the body motions are measured in
the With respect to coordinate system pull-down menu. You can pick
Absolute (World) or Local (Body CS). This coordinate system should be
the same as the coordinate system used to define the body’s position and
orientation in the VRML files.

A Simulink output port > appears on the block for each of the motion signals.
The translational signal is a 3-vector of spatial coordinates: (x, ¥, z). The
rotational signal is a 9-vector, column-wise representation of the 3-by-3
orthogonal rotation matrix R: (Rq;, Ro1, R31, R19, ... ).

Animating the Virtual World Bodies

Animating the virtual bodies requires interfacing the body sensor signals in
the SimMechanics model with the VRML translation and/or rotation fields in
the .wrl files. You accomplish this with the VR Sink block, which you can find
in the Virtual Reality Toolbox block library. Enter

vrlib

at the command line. Drag a copy of the VR Sink block into your model.

Open the VR Sink dialog box. (The figure “Conveyor Loader Model: VR Sink
Dialog Box” on page 6-39 displays an example of the dialog.) In the Source file
field in the World properties area, enter the name of the VRML file that
represents your model’s virtual world. This is the file that refers to the other
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.wrl files representing the component bodies of your machine. If the virtual
world VRML file is not the same directory as your model, enter the file’s path
relative to the model. Click Apply.

In the VRML tree window, the node list of the virtual world .wr1l file appears.
Expand the tree of each component body in the list to view that body’s check
box list. Select the rotation and/or translation check boxes as needed for each
body. Simulink input ports > appear on the block icon for each of these selected
check boxes. The ports are labeled node.field. The node is the name for the
body. The field is named either rotation or translation.

Converting Body Sensor Signals into VRML Format

You are now ready to connect the Body Sensor output signals to the VR Sink
block. But you might need to modify those signals for valid use in VRML.

® You can connect the translational motion signal line directly from the output
port of the Body Sensor to the node.translation input port on the VR Sink.
The VRML node tree directly accepts translation motion as a 3-vector signal
of rectangular coordinates (x,y,z).

Make sure that the translational motion signal refers to the same coordinate
system used to define the body’s position in the VRML files.

® You cannot directly connect the rotational motion signal line to the VR Sink.
The Body Sensor output represents orientation with a 3-by-3 rotation matrix
R, while VRML accepts orientation represented as the axis-angle 4-vector
form [n 6 ], where n = (n,, n,, n,) is a 3-vector representing the rotation axis
and 0 is the rotation angle.

Open the SimMechanics Utilities library. For each rotational motion signal,
drag a RotationMatrix2VR block into your model. Connect the rotation
signal from the Body Sensor block to the RotationMatrix2VR block. Then
connect the latter block to the corresponding node.rotation input port on
VR Sink for that body. This block converts the 3-by-3 R matrix signal into the
4-vector VRML form.

Close the VR Sink block dialog. Your SimMechanics model now animates the
virtual world.

Example: Interfacing the Conveyor Loader Model and Virtual World

In the mech_conveyor_vr demo model, open the Body Sensorl block. The block
measures the translational and rotational motion of Link3 in the conveyor:
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J Block Parameters : Body Sen: - 1o x|

Measures linearangular position, velocity, andfor acceleration of
a Body with respect to a specified coordinate systern. Oplional
ratation matrix for Body arientation. Oulputis Simulink signal.
Multiple output signals can be bundled into one signal.

rMeasurements

Measuring Body coordinate systern (see block diagram)

Wilh respect to coordinate system |Absulute (World) v[
¥ [xv.2]Position Im 'I

™ [,z Velocity mis =

™ [ By, 82 ) Angular velocity |Uegis vl

¥ [3x3] Rotation matrix

™ [y 2') Acceleration |mis‘2 vl
™ [&x" 8y" Bz"] Angular acceleration m

™ Output selected parameters as ane signal

0K Cancel | Help | Apply |

The Body Sensorl block has two Simulink output signals.

The other Body Sensor blocks are similar, except for Body Sensor2, which
measures only the translational motion of the pusher. All the Body Sensors
measure body motions with respect to World, the frame in which the conveyor
base is at rest. Each motion signal represents the body’s displacement relative
to its initial position.

The mech_conveyor_vr model contains a Virtual Reality Toolbox interface to
the model’s custom VRML files.
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Conveyor Loader Model with Custom Virtual Reality Interface

1 Trace each body sensor signal through the model. The signals are routed
through pairs of Simulink Goto and From blocks.
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2 Open the VR Sink block. The Source file is convmech.wrl, the master file
for this virtual world. The VRML tree on the right reproduces the node tree
visible in the VRML editor for convmech.wrl.

Source file Link1_node Rotation and translation fields

=10 x|

<} Block Parameters: ¥R Sink

%R Sink
Wirites values from vifual warld node fields. Fields to he written @xe marked by checks in the trefg view.
Every marked field hfs a corresponding input port on the block.
/ /1

rWorld propedies VRN tree
—Sourceﬂ|94¢ ™ SNow nade typed srlu field typesl” Show field value

" E- b ROOT =
Iconvmech.wrl Browse... |
UNMNAMED

Wiew | Edit | Reload | b Link1
— X addChpldjen
r Cutput — X remo ildren
r Open YRML viewer automatically _D cent
™ Allow remote access towarld — ] rotation
Description: —[ scale

—[O scale0fentation
convmech

— [¥] translation
—[ bboxcentar

~Block properties [ bhoxSize
- % child
Sample time (-1 for inherit): children
== b Linkz2
Jo- I 5

Preferences...l | QK || Cancel I Help | Apply |

Conveyor Loader Model: VR Sink Dialog Box

3 Expand and scroll down the VRML trees. The trees for Link1, Link2, Link3,
Link4, and Pusher list the field inputs for accepting motion signals.

= The Link component bodies require both translational and rotational
motions. All the Links have actively selected check boxes for their rotation
and translation field inputs.
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= The Pusher body requires only translational motion. Only the translation
field check box is selected for the Pusher.

Each of the nine Simulink input ports on the VR Sink block is named
node. field. The Base of the conveyor does not move, so its node has no
motion input fields.

In the VR Sink dialog, click View in the World properties / Source file
area.

Your Virtual Reality Toolbox viewer opens, displaying the conveyor machine
scene. The scene is identical to that visible in the VRML editor (see
“Example: Viewing Custom External VRML Files for the Conveyor Loader”
on page 6-31).

Close all the dialog boxes by clicking OK, leaving the viewer open.
Click the Start button in the model window.

As in the original mech_conveyor demo, starting the model opens the
Reference Position slider bar that you can move from side to side. As you
do so, watch the pusher in the viewer move in parallel.



Case Studies

SimMechanics features important advanced modes for analyzing machine motion beyond Forward
Dynamics integration of forces. This chapter explains how to specify machine motion, then deduce
the necessary forces and torques, with the inverse dynamics and kinematic analysis modes. You can
also analyze perturbations about a given machine trajectory by trimming and linearizing your model.

Finding Forces from Motions (p. 7-2) Examples of the Inverse Dynamics and Kinematics
analysis modes of SimMechanics

Trimming SimMechanics Models Examples of finding machine steady states with the

(p. 7-12) Trimming mode of SimMechanics

Linearizing SimMechanics Models Determining the linear response of trimmed mechanical

(p. 7-23) systems with SimMechanics and Simulink
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Finding Forces from Motions

The SimMechanics Kinematics and Inverse Dynamics modes (see “Choosing an
Analysis Mode” on page 5-4) enable you to find all the forces on a closed-loop
system or an open system, respectively, given a model that completely specifies
the system’s motions. Because the model specifies the positions, velocities, and
accelerations of the model’s components, these modes, unlike Forward
Dynamics mode, do not need to compute these quantities. Consequently,
Kinematics and Inverse Dynamics modes take less time to compute the forces
on a system. The time saving depends on the size and complexity of the system
being simulated.

To use these modes, you must first build a model of the system that specifies
completely the positions, velocities, and accelerations of the system’s joints and
bodies. Such a model is called a kinematic model. You create a kinematic model
by creating and interconnecting blocks representing the bodies and joints of the
system and then connecting actuators to the joints to specify the motions of the
bodies.

A model does not have to actuate every joint to specify completely the motions
of a system. In fact, the model need actuate only as many joints as there are
independent degrees of freedom in the system. (See “Counting Degrees of
Freedom” on page 4-67.) For example, a model of a four-bar mechanism need
actuate only one of the mechanism’s joints, because a four-bar mechanism has
only one degree of freedom. To avoid overconstraining the model’s solution, the
number of actuated joints should not exceed the number of degrees of freedom.
Attempting to simulate an overconstrained model causes Simulink to halt the
simulation and display an error message.

The following sections illustrate use of Kinematics and Inverse Dynamics
modes to find the forces on the joints of a closed- and an open-loop system,
respectively.
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Closed-Loop Example: Four-Bar System

Note The Kinematics mode works only on closed topologies and requires
motion-actuating every independent DoF (see “Counting Degrees of Freedom”
on page 4-67). There must also be no Joint Stiction Actuators and no
nonholonomic constraints.

Consider the four-bar system used to illustrate model building in the tutorial
titled “A Four Bar Mechanism” on page 2-36.

) I S

] it AU

02 ________ Revolutel

Suppose that you want to keep this system from collapsing under its own
weight. Because this system has only one degree of freedom, applying a
counterclockwise torque to the joint labeled Revolutel would accomplish this
objective. But how much torque is sufficient?

To answer this question, you must first build a kinematic model of the
stationary four-bar system. The kinematic model must specify the structure of
the four-bar system and its motion over time. The four-bar model from the
four-bar tutorial specifies the structure of the system. You can therefore use
the tutorial model as a starting point for creating the kinematic model. You can
find this version of the tutorial in the model mech_four_bar_forw.
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To turn the tutorial model into a kinematic model, you must specify how the

system moves over time. In particular, you want the model to specify that the
system remains stationary. Because a four-bar system has only one degree of
freedom, you need specify only that one of the joints remains stationary. You
can use a Joint Actuator to accomplish this task.

The following diagram shows a kinematic model derived from the tutorial
model in this manner. This system is modeled in the mech_four_bar_kin.
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The model uses a Joint Actuator block driven by a Constant block to specify the
motion on the Revolutel joint. The Constant block outputs a three-element
vector that specifies the angular position, velocity, and acceleration,
respectively, of the joint as 0. The model uses a Joint Sensor block connected to
a Scope block to display the resulting torque on the joint and a To Workspace
block to save the torque signal to the MATLAB workspace. Running this model
in Kinematics mode (see “Choosing an Analysis Mode” on page 5-4) reveals
that the torque on the Revolutel joint is 27.9032 n-m.

To verify that the computed torque is, indeed, the torque required to keep the
system stationary, create a forward-dynamics model that applies the computed

torque to the Revolutel joint. This model is contained in mech_four_bar_stat.
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Now run the model in Forward Dynamics mode, with the Revolutel Angle
Scope open.

The Scope display reveals that the model does, indeed, remain stationary,
although only for about 1.5 seconds. The model is nonlinear and unstable, and
the computed force value is not copied exactly in the new model.
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Open-Topology Example: Double Pendulum

Note The Inverse Dynamics mode works only on open topologies and
requires motion-actuating every independent DoF (see “Counting Degrees of
Freedom” on page 4-67).

Consider a double pendulum consisting of two thin rods each one meter long
and weighing one kilogram. Suppose that the upper rod is initially rotated 15
degrees from the perpendicular.

How much torque is required to keep the pendulum stationary? Solving this
problem entails building a kinematic model of the stationary pendulum. The
model must represent the geometry of the double pendulum and specify that it
remains stationary throughout the simulation.

The kinematic model can take different approaches to specifying the initial
state of the pendulum. One approach uses Body block parameters to specify the
initial states. Another approach uses Actuator block parameters.
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Using Body Block Parameters to Specify Initial Conditions

The following diagram illustrates the Body block approach to modeling initial
states. The model is mech_dpend_invdyn1.

Kinematic Model
of a
'y Double P

Ground
Location=[020]

-
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To Wints
Co: 005 0] (CET 0| o @ Wemspace
cst:
FOS: [02.0 0] (WORLD) 2 . o .
ORIENT: [0 0 15] O Initial angle: set in Body orientation
(WORLE, EULER X-¥-Z)
CS2: [0-1.0 0] (C51)
e ]
3

Lower Joint
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T—-Q,)/

Motion Lower

Acceleration 0 degisiz

Thin Rod = Sensor2
hiass: 1 kg i1
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C&: [0-0.50] (C51)
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POS: [0 0] (CE2@B1)
ORIENT: [0 0 -15]

(CSZ@B1, EULER X-¥-2) ﬂ
CS2: [0-1.00] (CE1)

This model represents the pendulum by two Body blocks and two Revolute
Joint blocks. The CS1 axis of the upper body (B1) of the pendulum is rotated 15
degrees from the perpendicular (see annotation for block B1). The coordinate
systems for the lower block (B2) are aligned with CS1 of the upper block. The
CS1 of B2 is rotated -15 degrees relative to CS1 of B1; i.e., it is perpendicular
to the world coordinate system. Actuator blocks connected to the joint blocks
specify that the pendulum should not move from its initial position. The model
uses sensor blocks connected to To Workspace blocks to output the torques on
the upper and lower joints as MATLAB workspace variables torque_upper and
torque_lower, respectively.
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Using Actuator Blocks to Specify the Initial States

The following diagram shows the use of Actuator blocks to specify the initial
kinematic state. The system is modeled in the mech_dpend_invdyn2.
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Using the actuators to specify the displacement slightly simplifies the
configuration of the body blocks.

Simulating either model in Inverse Dynamics mode (required for open-loop
models; see “Choosing an Analysis Mode” on page 5-4) causes Simulink to
compute the joint torques required to maintain the pendulum in its initial
position. The torques are 3.8085 and 0 newton-meters, respectively. You can
verify that these are the correct answers by creating a version of the model that
applies the computed torques to the joints and simulating the model in
Forward Dynamics mode. For example, the following diagram illustrates a

7-9



7 Case Studies

forward dynamics version of the kinematic model that uses the joint actuators

to specify the initial angular displacement of the pendulum bodies. Open the
model mech_dpend_stat.
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Note that this body uses Initial Condition blocks to specify the initial 15 degree
displacement of the upper body from the vertical in the world coordinate
system and the corresponding initial -15 degree displacement of the lower body
from the vertical in the coordinate system of the upper body. The negative
displacement of the lower body is equivalent to positioning it as vertical in the
world coordinate system.

Simulating this model in Forward Dynamics mode results in the following
display on the upper joint scope.
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The scope reveals that the upper joint never moves from its initial 15 degree
displacement, thus confirming that the computed torque is correct.
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Trimming SimMechanics Models

Trimming a mechanical system refers to the process of finding solutions for the
model that satisfy conditions on its inputs, outputs, and states that you specify;
for example, steady-state solutions where some or all of the derivatives of the
system’s states are zero. To use the Simulink trim command on a system
represented by a SimMechanics model, you must select the SimMechanics
Trimming mode (see “Trimming Mode” on page 5-4). You must also specify the
initial states of the system and the conditions that the solutions must satisfy.
The following examples illustrate the process of trimming unconstrained and
constrained mechanical systems, respectively.

Consult the Simulink user’s guide for more on trimming models.

Caution You cannot use Driver or Joint Initial Condition Actuator blocks
while trimming a model.

Always run a model you plan to trim at least once in Forward Dynamics first.

Unconstrained Example: Spring-Loaded Double
Pendulum

Consider the following spring-loaded double pendulum.
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The joint connecting the upper and lower arms of this pendulum contains a
torsional spring and damper system that exert a counterclockwise force

directly proportional to the angular displacement and velocity of the joint,
respectively. Suppose that the lower arm is folded upwards almost vertically
and then allowed to fall under the force of gravity. At what point does the
spring-damper system reach equilibrium; i.e., at what point does it cease to

unfold?

To find an equilibrium point for this system:

1 Build and run a SimMechanics model of the system.

This diagram shows an example of such a model, mech_dpend_trim.

Ground
Location=[020]

Upper Joint
Fosition: O degrees
Welocity: 0 degfsiz
Acceleration 0 degisiz

Thin Rod

hasz: 1 kg

Inertia: [0.02300;0 083 0;000]
CG: [0 1.5 0] AORLD)

CS1: [00.50](CE)

CS2: [0-50] (06

Spring-Loaded Joint
Fosition: O degrees
Welocity: 0 degfsiz
Acceleration 0 degisiz

Thin Rod

hasz: 1 kg

Inertia: [0.02300;0 083 0;000]
CG: [0 0.5 0] AORLD)

CS1: [0 .5 0] (06

CS2: [0-50] (06
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This model uses Body blocks to model the upper and lower arms of the
pendulum and a Revolute Joint block (J1) to model the connection between
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the pendulum and ground. The model uses a Subsystem block (J2) to model
the spring-loaded revolute joint between the arms. The subsystem in turn
uses a negative feedback loop consisting of Revolute Joint, Joint Sensor,
Joint Actuator, Gain, and Sum blocks to model the spring-loaded joint. The
feedback loop models a torsional spring and damper by multiplying the
angular displacement and velocity, respectively, of the joint by constants.
The loop sums the resulting torques and feeds them back into the joint via
the Joint Actuator block. The result is that the joint experiences a torque
that opposes its motion and is proportional to its angular displacement and
velocity.

The spring and damper constants used in this model were chosen by running
the model with various candidate values and choosing the ones that resulted
in a moderate deflection of the pendulum.

2 Determine the layout of the model’s state vector.

You need to determine the layout of the model’s state vector in order to tell
the trim command where in the model’s state space to start its search for the
pendulum’s equilibrium point (the point where it stops unfolding). Use the
SimMechanics mech_stateVectorMgr command to perform this task. Refer
to the Ground block, G.

>> v = mech_stateVectorMgr('mech_dpend_trim/G');
>> v.StateNames

ans =

'mech_dpend_trim/J2/Revolutedoint:R1:Position'
'mech_dpend_trim/J1:R1:Position’
'mech_dpend_trim/J2/Revolutedoint:R1:Velocity'
'mech_dpend_trim/J1:R1:Velocity'

The StateNames field of the state vector object returned by
mech_stateVectorMgr lists the names of the model’s states in the order in
which they appear in the model’s state vector. Thus the field reveals that the
model’s state vector has the following structure:

x
PN
-
~

I

position of lower joint (J2)
position of upper joint (J1)
velocity of lower joint (J2)

X X
w N
nn
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Xx(4) = velocity of upper joint (J1)
3 Determine an initial state vector.

The initial state vector specifies the point in a system’s state space where the
trim command starts its search for an equilibrium point. The trim command
searches the state space outward from the starting point, returning the first
equilibrium point that it encounters. Thus, the starting point should not be
at or near any of a system’s trivial equilibrium points. In the case of the
double pendulum, the point [0; 0; 0; 0] (i.e., the pendulum initially folded up
and stationary) is a trivial equilibrium point and therefore to be avoided.
The initial state vector must also be a column vector and must specify
angular states in radians.

Often, the choice of a good starting point can be found only by experiment,
that is, by running the trim command repeatedly from different starting
points to find a nontrivial equilibrium point. This is true of the double
pendulum of this example. Experiment reveals that the following starting
point

ix(1) J2 (lower joint) angle = -35 degrees = -0.6109 radians
ix(2) J1 (upper joint) angle -10 degrees -0.1745 radians
ix(
ix(

3) J2 angular velocity = 0 radians/sec
4) = J1 angular velocity = 0 radians/sec

yields a nontrivial equilibrium point. Therefore you can save time by
creating an initial state vector set to these values.

>> ix = [-0.6109; -0.1745; 0; 0];

Note The trim command ignores initial states specified by Initial Condition
blocks. Thus, you cannot use these blocks to specify the starting point for
trimming a model. If your model contains IC blocks, create the initial state
vector as if the blocks did not exist.
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4 Set Trimming as the analysis type on the Parameters pane of the
Mechanical Environment Settings dialog (see “Choosing an Analysis
Mode” on page 5-4).

This option inserts a constraints subsystem and associated output at the top
level of the model.

Constraint output

S

B

Spring-Loaded Double Pendulum

Ground
Location = [0 2 0] &

Upper Joint
Position: 0 degrees a1

/‘@
Sensar1 J1Angle

Welocity: 0 degfsiz LF
—-lfffﬂfffi_______‘l__ﬁ__“-“‘

SimMechanics inserts the constraint output in order to make the
constraints available to the trim command. The spring-loaded double
pendulum has no constraints. Hence the constraint output port outputs
nothing and is not needed to trim the pendulum.

5 Enter the following commands to find the equilibrium point nearest to the
starting point.
ix = [-0.6109; -0.1745; 0; 0];
iv = [];
[x,u,y,dx]=trim('mech_dpend_trim',ix,iu);

The array ix specifies the starting point determined in step 3. The array iu
specifies the initial inputs of the system. Its value is null because the system
has no inputs. (Thus the u and y outputs are null.) The third command
executes the form of the trim command that finds a system’s steady-state
(equilibrium) points, i.e., the points where the system’s state derivatives are
zero. The array x contains the state vector corresponding to the first
equilibrium point that the trim command finds:
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X =
-0.8882
-0.3165
-0.0000
0.0000

The resulting states are angular positions and velocities expressed in units
of radians. Based on the layout of the model’s state vector determined in step
2, the pendulum reaches equilibrium when its upper joint has deflected to
an angle of -18.1341 degrees and its lower joint to an angle of -50.8901
degrees. The system state derivatives dx are zero, within tolerances.

Running the model in Forward Dynamics mode confirms that this is indeed
an equilibrium point of the pendulum.

leamlocre ABRE | EE &

lem|lore ABRB B E

The simulation reveals that the spring stops unfolding after about nine
seconds, that is, it reaches a steady-state point. At this point the angles of
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7-18

the upper and lower joints are about -18 and -50 degrees, respectively, and
the velocities are zero. The trim command can find the values of these states
precisely.

Constrained Example: Four-Bar System

Consider a planar four-bar system consisting of a crank, a coupler, and a
rocker. The following figure shows a block diagram and a convex hull diagram
of the four-bar system. The model is mech_four_bar_trim.

E—D@ Ravoluted Bar2 Revolute2 0&r

T

Four Bar Mechanism with Trimming

See example in
*Trimming Mechanical Systemns®
Baid Barl

Joint Actuator

0.2 0z 0.4

o
2
2
2 =
2 s
E_.I — I.—qicm & o=
f=
=
=

Suppose you want to find out the torque required to turn the crank at a
constant angular velocity of 1 radian/sec over a range of crank angles. Run the
model first in Forward Dynamics, then follow this procedure with the trim
command and the SimMechanics Trimming mode to determine the torque:

1 Cut the closed loop that represents the four-bar system at the joint
(Revolutel) connecting the rocker to ground (see “Modeling Bodies” on
page 4-8).

Manually cutting the rocker joint ensures that SimMechanics does not cut
the four-bar loop at the crank joint and thereby eliminate the crank’s
position and velocity from the system’s state vector.
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2 Select Signal Dimensions from the model’s Format menu.

This causes Simulink to display the width of signals on the model diagram
and hence enables you to read the number of constraints on the four-bar
system from the diagram in the next step.

3 Set the analysis mode for the model to Trimming (see “Trimming Mode” on
page 5-4).

This causes SimMechanics to insert a subsystem and an output block that
output a signal representing the mechanical constraints on the four-bar
system.

Constraint output

The width of the constraint signal (4) reflects the fact that the four-bar
system is constrained to move in a plane and thus has only four constraints:
two position constraints and two velocity constraints.

4 Determine the layout of the system’s state vector.

Use the state vector command mech_stateVectorMgr to perform this task:

Handle = get_param(find_system('mech_four_bar_trim/
Revolute2'), 'handle');

StateManager = mech_stateVectorMgr(Handle{1});
StateManager.StateNames

ans =

'mech_four_bar_trim/Revolute2:R1:Position’
'mech_four_bar_trim/Revolute3:R1:Position’
'mech_four_bar_trim/Revolute4:R1:Position’
‘mech_four_bar_trim/Revolute2:R1:Velocity'
‘mech_four_bar_trim/Revolute3:R1:Velocity'

7-19



7 Case Studies

‘mech_four_bar_trim/Revolute4:R1:Velocity'

5 Specify the initial state vector x0 and the index array ix:

X0 = [050;0;0;0;11;
ix = [3;6];

The array x0 specifies that the trim command should start its search for a
solution with the four-bar system in its initial position and with the crank
moving at an angular velocity (state 6) of 1 radian/sec. The array ix specifies
that the angular position (state 3) and velocity (state 6) of the crank must
equal their initial values, 0 radians and 1 radian/sec, respectively, at the
equilibrium point. It is not necessary to constrain the other states because
the four-bar system has only one global position DoF and only one global
velocity DoF.

6 Specify zero as the initial estimate for the crank torque:
u0 = 0;

7 Set up the trim command to drive the constraint outputs to 0:

yo [0;0;0;0];
iy [1;2;3;4];

The y0 array specifies that the initial values of the constraint outputs are 0.
The iy array specifies that the constraint outputs at the solution point must
equal their initial values (0). This assures that the solution satisfies the
mechanical constraints on the system.

Note The four-bar system has only constraint outputs. If you were trimming
a system with nonconstraint outputs, you would have to include the
nonconstraint outputs in the initial output vector.

8 Specify the state derivatives to be trimmed:

dx0 = [0;0;1;0;0;0];
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idx = [6];

The dx0 array specifies the initial derivatives of the four-bar system’s states.
In particular, it specifies that the initial derivative of the crank angle (i.e.,
the crank angle velocity) is 1 radian/sec and all the other derivatives (i.e.,
velocities and accelerations) are 0. The idx array specifies that the
acceleration of the crank at the solution point must be 0, i.e., the crank must
be moving at a constant velocity. It is not necessary to constrain the

accelerations of the other states because the system has only one velocity
DoF.

Note The four-bar system has only mechanical states. If you were trimming
a system that has nonmechanical states, you would have to include the
nonmechanical states in the initial state vector.

9 Trim the system at the initial crank angle to verify that you have correctly
set up the trim operation:

[X,U,y,dX] =
trim('mech_four_bar_trim',x0,u0,y0,ix,[],1iy,dx0,idx);

Trim the system over a range of angles. Use the following program to
perform this task.

Angle = [];
Input [1;
State [1;
dAngle = 2*pi/10;
Constraint = [];

for i=1:11;
x0(3) = (i-1)*dAngle;
x0(6) = 1;
[XsusdeX] =
trim('mech_four_bar_trim',x0,u0,y0,ix,[],iy,dx0,idx);
disp(['Iteration: ', num2str(i), ' completed.']);
Angle(i) = x0(3);
Input(:,1i) = u;
State(:,1) = X;
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Constraint(:,i) = vy;
if (i>8),
u0 = spline(Angle,Input,Angle(end) + dAngle);

x0 = spline(Angle,State,Angle(end) + dAngle);
else
X0 = Xx;
uo = u;
end;
end;
10 Plot the results.

Use the following program to perform this task:

figure(1);

plot(Angle,Input);

grid;

xlabel('Angle (rad)');

ylabel('Torque (Nm)');

title('Input torque vs crank angle');

The following figure shows the resulting plot.

Input torgue vs crank angle

Torgue [Mm)

Angle (rad)
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Linearizing SimMechanics Models

The Simulink 1inmod command creates linear time-invariant (L'TI) state-space
models from Simulink models. You can use this command to generate an LTI
state-space model from a SimMechanics model, for example, to serve as input
to Control System Toolbox commands that generate controller models. The
linmod command allows you to specify the point in state space about which it
linearizes the model (the operating point). You should choose a point where
your model is in equilibrium, i.e., where the net force on the model is zero. You
can use the Simulink trim command to find a suitable operating point (see
“Trimming SimMechanics Models” on page 7-12). By default, 1inmod uses an
adaptive perturbation method to linearize a SimMechanics model. The
Mechanical Environment Settings dialog box allows you to require that
linmod use a fixed perturbation method instead (see “Linearization Pane” on
page 5-10). The following example illustrates the use of 1inmod to linearize a
SimMechanics model.

Consult the Simulink user’s guide for more on linearizing models.

Caution Before linearizing a model, perform at least one simulation in
Forward Dynamics mode. See “Choosing an Analysis Mode” on page 5—4.

Model Linearization Example: Double Pendulum
Consider a double pendulum initially hanging straight up and down.
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The net force on the pendulum is zero in this configuration. The pendulum is
thus in equilibrium.

The following figure shows a SimMechanics model of the pendulum,
mech_dpend_forw.
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Double Pendulum

Ground
Location = [020]

Upper Joint
Fosition: 0 degrees
Welosity: O deg/s
Accelerstion O degizis

Thin Rod

Mass: 1 kg

Inertia: 0033000 033 0;000] kg.m2
C&: [ 1.5 0] (WORLE)

CS1: [0 0.50](05)

CS2: [0-.5 0] (CB)

Lower Joint
Position: 0 degrees
Velocity: 0 degls
Acceleration 0 degisis

[3-3]

Thin Red

Mass: 1 kg

Inertia: [0.053 00:0 083 0;000] kg.m2 B G
©%: [0 0.5 0] (WORLD)

CS4: [0.50] (0

£S2: -5 0] (C5)

To linearize this model, enter
[A B C D] = linmod('mech_dpend_forw');

at the MATLAB command line. This form of the 1inmod command linearizes
the model about the model’s initial states.

Note Ifyou specify any joint primitive conditions with IC blocks, these initial
condition values always override any state vector initial values specified via
the 1inmod command.

The double pendulum model in this example contains no IC blocks. The initial
conditions specified via the 1inmod command are therefore implemented
without modification.
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The matrices A, B, C, D returned by the 1inmod command correspond to the
standard mathematical representation of an LTI state-space model:

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

where x is the model’s state vector, y is its outputs, and u is its inputs. The
double pendulum model has no inputs or outputs. Consequently, only A is not
null. This reduces the state-space model for the double pendulum to

x(t) = Ax(t)
where
A =
0 0 1.0000 0
0 0 0 1.0000
-137.3400 39.2400 0 0
39.2400 -19.6200 0 0

This model specifies the relationship between the state derivatives and the
states of the double pendulum. The state vector of the LTI model has the same
format as the state vector of the SimMechanics model. The SimMechanics
mech_stateVectorMgr command gives the format of the state vector as follows:

vm = mech_stateVectorMgr('mech_dpend_forw/G');
ans =

'mech_dpend_forw/J2:R1:Position'
'mech_dpend_forw/J1:R1:Position'
'mech_dpend_forw/J2:R1:Velocity'
'mech_dpend_forw/J1:R1:Velocity'

Multiplying A by the state vector x yields the differential state equations
corresponding to the LTI model of the double pendulum.
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0; = —19.6200 - 6, +39.2400 - 0,
0, = 39.2400 - 6, —132.66033 - 0,
where

0, = position of top joint (J1)

0, = position of bottom joint (J2)

The following Simulink model implements the state space model represented
by these equations.

.| -
i

1
: Ll
thetat

thetat dot

Lt -19.5200}47

thetat dot 2

-137.3400

F

. L&D

z
thetaZ

thetaZ dot2 thetaZ dot

This model in turn allows creation of a model, located in mech_dpend_1lin, that
computes the LTI approximation error.
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Ground &
Location=[020]

Upper Joint

J1
Fosition: 16 degraes

Welocity: 0 degfz
Acceleration 0 degisiz

Thin Rod

hasz: 1 kg

Ineria: [0.083 0 0;0 083 0;000] kg.m2
CG: [0 1.5 0] AORLD)

CS1: [00.50](CE)

CS2: [0-50] (06

B1

c5z g cs1|e

Lower Joint
Fosition: O degrees
Welocity: 0 degfz
Acceleration 0 degisiz

Jz

Thin Rod

hasz: 1 kg

Ineria: [0.083 0 0;0 083 0;000] kg.m2
CG: [0 0.5 0] AORLD)

CS1: [0 .5 0] (06

CS2: [0-50] (06

thetat
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Goto

Scope

thetaZ

& csife

Running the model twice with the upper joint deflected 2 degrees and 5
degrees, respectively, shows an increase in error as the initial state of the
system strays from the pendulum’s equilibrium position and as time elapses.
This is the expected behavior of a linear state-space approximation.

0.005 -

001

2 degrees

5 degrees



SimMechanics Block
Reference

This chapter contains complete information on every block in SimMechanics. Refer to this chapter
when you need to find detailed information on a particular block.

Blocks — By Category (p. 8-2) The SimMechanics blocks summarized by block library
Blocks — Alphabetical List (p. 8-8) The SimMechanics blocks listed alphabetically by name



8 SimMechanics Block Reference

Blocks - By Category

This section consists of the block library hierarchy, a structured list of the
SimMechanics libraries; and the block library contents, a listing of all
SimMechanics blocks arranged by library.

Use the Simulink Library Browser or the SimMechanics library to access the
blocks directly, guided by this hierarchical library list. The subsequent pages
contain reference information for all blocks in SimMechanics, arranged by
library and in alphabetical order by block name.

Bodies Library

Contains blocks representing rigid bodies and ground points.

Joints Library
Contains blocks representing relative motion degrees of freedom (DoFs)
between bodies.
Disassembled Joints Sublibrary
Contains blocks representing initially misaligned DoFs between bodies.
Massless Connectors Sublibrary
Contains blocks representing rigidly separated DoF pairs between bodies.

Constraints & Drivers Library
Contains blocks to restrict or externally drive relative DoF's between bodies.

Sensors & Actuators Library

Contains blocks to initiate and measure motion, and to interface between
SimMechanics and Simulink.

Force Elements Library
Contains blocks to model forces/torques between bodies

Utilities Library
Contains additional useful blocks for modeling and simulating machines.



Demos Library

Contains Simulink model files with SimMechanics blocks. Online Help users
can click this library name to browse the demos.
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Creating Bodies and Grounds

Body
Ground

Creating Joints

Creating Assembled Joints

Bearing

Bushing

Custom Joint

Cylindrical

Gimbal
In-Plane
Planar
Prismatic
Revolute

Screw

Six-DoF
Spherical
Telescoping

Universal

Weld

Customizable rigid body

Immobile point at rest in World

Composite: one prismatic, three revolutes

Composite: three prismatics, three
revolutes

Customizable composite joint: up to three
translational and three rotational DoF's

Composite: one prismatic, one revolute
(axes aligned)

Composite: three revolutes

Composite: two prismatics

Composite: two prismatics, one revolute
Primitive: one translational DoF
Primitive: one rotational DoF

Composite: one prismatic, one revolute
(constrained)

Composite: three prismatics, one spherical
Primitive: three rotational DoF's at pivot
Composite: one prismatic, one spherical
Composite: two revolutes

Primitive: no DoF's (rigid)



Creating Disassembled Joints

Disassembled Cylindrical Misaligned translational-rotational DoF's
Disassembled Prismatic Misaligned translational DoF
Disassembled Revolute Misaligned rotational DoF

Disassembled Spherical Dislocated spherical DoF

Creating Massless Connectors

Revolute-Revolute Composite: revolute separated revolute
Revolute-Spherical Composite: revolute separated spherical
Spherical-Spherical Composite: spherical separated spherical
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Constraining and Driving Motion

Angle Driver Specify angle between two body axes as
function of time

Distance Driver Specify distance between two body CS
origins as function of time

Gear Constraint Constrain two bodies rotating along two
tangent pitch circles

Linear Driver Specify vector component between two Body
CS origins as function of time

Parallel Constraint Constrain two body axes to be parallel

Point-Curve Constraint Constrain motion of one body along curve on
another body

Velocity Driver Specify projected linear and angular

velocities of two bodies as a function of time

Actuating and Sensing Motion

Body Actuator Apply force/torque or motion to a body
Body Sensor Measure body motion
Constraint & Driver Sensor Measure constraint force/torque between

pair of constrained bodies

Driver Actuator Apply motion to pair of constrained bodies
Joint Actuator Apply force/torque or motion to a joint
primitive

Joint Initial Condition Actuator Apply initial positions and velocities to Joint

primitives
Joint Sensor Measure joint motion and force/torque
Joint Stiction Actuator Apply friction to joint primitive
Variable Mass & Inertia Vary the mass and inertia on a body (does
Actuator not include thrust force or torque)



Applying Force Elements

Body Spring & Damper

Joint Spring & Damper

Model damped linear oscillator force
between two bodies

Model damped linear oscillator force or
torque on a joint between two bodies

Additional Useful Blocks

Connection Port

Continuous Angle

Mechanical Branching Bar

RotationMatrix2VR

Connector port for a subsystem

Convert bounded angular signals to
unbounded signals

Map multiple sensor/actuator lines to one
sensor/actuator port

Convert rotation matrix to rotation axis and
angle
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Angle Driver . . ... .. 8-10
Bearing . ... 8-13
Body ... e 8-18
Body Actuator ........... .. ... .. e 8-29
Body Sensor . ......... .. .. 8-32
Body Spring & Damper ............... . ... e 8-36
Bushing . ... ... e 8-39
Connection Port .. ... .. . e 8-44
Constraint & Driver Sensor ............... .. 8-45
Continuous Angle . .......... ... i e 8-48
Custom dJoint . ... ... 8-51
Cylindrical . ......... ... e e 8-58
Disassembled Cylindrical ............ ... ... .. ... . ... 8-62
Disassembled Prismatic ............ .. . . . . e 8-67
Disassembled Revolute ............ . ... . ... . . . i, 8-71
Disassembled Spherical .............. ... ... ... . . . . .. ... 8-75
Distance Driver . ....... ... .. e 8-78
Driver Actuator . ......... ... e 8-81
Gear Constraint . . ... e 8-84
Gimbal . ... e 8-88
Ground . .. ...... . e 8-93
In-Plane . ... e 8-95
dJoint Actuator . .......... ... e 8-100
Joint Initial Condition Actuator . ................ .. .. 8-105
JOINt SenSOT . .ottt 8-109
Joint Spring & Damper .. ........... . 8-117
Joint Stiction Actuator ......... ... ... . . . ... . 8-121
Linear Driver . . ... e 8-128
Mechanical BranchingBar ..................... ... . ........... 8-131
Parallel Constraint . .............. . ... 8-135
Planar . . ... e 8-138
Point-Curve Constraint . ................ ... 8-143
Prismatic ........ . . e 8-152
Revolute . ... .. e 8-156
Revolute-Revolute . ........ ... . . . . e 8-160
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Revolute-Spherical . ... ....... . ... . ... . . .. 8-165
RotationMatrix2VR . ...... ... .. . 8-170
S W .\t 8-172
Six-DoF .. 8-177
Spherical . ........ .. e 8-181
Spherical-Spherical .......... ... . ... . . . . 8-186
TelesSCopPIng . . .ottt 8-190
Universal . ........ ... e 8-194
Variable Mass & Inertia Actuator .............................. 8-199
Velocity Driver . ... ... e e 8-203
Weld ..o 8-207
mech_stateVectorMgr . ........ ... ... . . . . . 9-3



Angle Driver

Purpose
Library

Description

Al
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Specify the angle between two body axis vectors as a function of time
Constraints & Drivers

The Angle Driver block drives axis vectors defined on two Bodies. You specify
fixed base and fixed follower body axis vectors ag, ap in the Body CS on either
side of the Driver on each body, then drive the angle between the body axis
vectors as a function of time.

The Angle Driver block specifies the angle 6 defined by
cos 0 = |ag*ap|/(|ag| |ap|)

as a function of time: 0 = f(£). You connect the Angle Driver to a Driver Actuator
block.

The Simulink input signal into the Driver Actuator specifies the
time-dependent driving function f(¢) and its first two derivatives, as well as
their units. If you do not actuate Angle Driver, this block acts as a
time-independent constraint that freezes the angle between the two body axes
at its initial value during the simulation.

Drivers restrict relative degrees of freedom (DoF's) between a pair of bodies as
specified functions of time. Locally in a machine, they replace a Joint as the
expression of the DoF's. Globally, Driver blocks must occur topologically in
closed loops. Like Bodies connected to a Joint, the two Bodies connected to a
Drivers are ordered as base and follower, fixing the direction of relative motion.

You can also connect a Constraint & Driver Sensor to any Driver measure the
reaction forces/torques between the driven bodies.



Angle Driver

DialogBox and
Parameters

Connection
Parameters

<} Block Parameters : Angle Driy - ol x|

rDescription

Drives the angle between base (B and follower {F) Body axis vectars
with a specified Driver Actuator signal. Fixed axes define body axis
vectars in hase and follower coordinate systems. Sensor and actuatar
ports can be added. Base-follower sequence determines sign of
forward motion.

r Connection parameters
Current hase: =not connected=
Current follower: =not connected=
Murmber of sensor f actuator ports: lﬂ

 Parameters
Fixed axis [xyz] Reference cays
Onbase: (1 0] [worRLD =]
on fallower. [[1 0 0] [wORLD |
Ok | Cancel | Help | Apply |

The dialog box has two active areas, Connection parameters and
Parameters.

Current base

When you connect the base (B) connector port on the Angle Driver block to
a Body CS Port on a Body, this parameter is automatically reset to the
name of this Body CS. See the following “Angle Driver base and follower
Body connector ports” figure.

Current follower

When you connect the follower (F) connector port on the Angle Driver block
to a Body CS Port on a Body, this parameter is automatically reset to the
name of this Body CS. See the following “Angle Driver base and follower
Body connector ports” figure.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Driver Actuator and Constraint & Driver Sensor
blocks to this Driver. The default is 0.

To activate the Driver, connect a Driver Actuator.
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Parameters

See Also

8-12

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the follower rotating in the right-handed sense
about the rotation axis.

Base Body connector port
\ Bl
EReT)

s\ Follower Body connector port

Angle Driver base and follower Body connector ports

Angle Driver

Fixed axis

For the Base and Follower bodies, respectively, enter the body axis
vectors. The defaults are [1 0 0].

Reference csys
Using the pull-down menu, choose the coordinate system (World, the base
Body CS, or the follower Body CS) whose coordinate axes the Base and
Follower body axis vectors are oriented with respect to. This CS also
determines the absolute meaning of reaction forces/torques at this Driver.
The defaults are WORLD.

Constraint & Driver Sensor, Driver Actuator, Parallel Constraint, Velocity
Driver

See “Modeling Constraints and Drivers” on page 4-34 for more on restricting
DoF's with Drivers.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on using drivers in closed loops.

See “Constraining and Driving Motion” on page 8-6.



Bearing

Purpose
Library
Description

E%

—

Represent a composite joint with one translational and three rotational DoF's
Joints

The Bearing block represents a composite joint with one translational degree
of freedom (DoF) as one prismatic primitive and three rotational DoF's as three
revolute primitives. There are no constraints among the primitives. Unlike
Telescoping, Bearing represents the rotational DoF's as three revolutes, rather
than as one spherical.

Caution A joint with three revolute primitives becomes singular if two or
three of the rotation axes become parallel (“gimbal lock”). The simulation
stops with an error in this case.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Bearing block is assembled: the origins of
these Body CSs must lie along the primitive axes, and the Body CS origins on
either side of the Joint must be spatially collocated points, to within assembly
tolerances.

You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies.

Note Bearings are often represented by one translational and one rotational
DoF. The Bearing block has three rotational degrees of freedom, rather than
one, in order to represent transverse “play” in the joint.
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A Joint block represents only the abstract relative motion of two bodies, not the
bodies themselves. You must specify reference CSs to define the directions of
the joint axes.
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DialogBox and

Parameters

Connection
Parameters

<} Block Parameters : Bearing ' - ol x|

rDescription

The Follower (F) rotates around three primitive revolute axes (R1, R2,
R3) and translates along one primitive prismatic axis P1 with respect
to the Base (B) Body. Axis P1 must be parallel to axis R3. R1 attached
to Base. P1 attached to Follower. Listed arder of primitives is order of
mation during simulation. Sensor and actuator ports can he added.
Basze-Faollower sequence and axes directions determine sign of
forward mation. This joint becomes singular if two revolutes align.

Represents three rotational and one translational degrees of freedaom.

r Connection parameters
Current hase: =not connected=
Current follower: =not connected=
Murmber of sensor f actuator ports: lﬂ

 Parameters

Axes | Advanced |

Axis of action
Mame | Primitive [y 2] Reference csys
F1 | Rewolute |[100] WORLD hd
R2 | Rewolute |[010] WORLD hd
R3 | Rewolute |[001] WORLD hd
F1 Frismatic |[00 1] WORLD hd

Ok | Cancel | Help | Apply

The dialog box has two active areas, Connection parameters and
Parameters.

Current base

When you connect the base (B) connector port on the Bearing block to a
Body CS Port on a Body, this parameter is automatically reset to the name
of this Body CS. See the following “Bearing base and follower Body

connector ports” figure.

The base Body is automatically connected to the first joint primitive R1 in

the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Bearing block to a
Body CS Port on a Body, this parameter is automatically reset to the name
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Parameters

8-16

of this Body CS. See the following “Bearing base and follower Body
connector ports” figure.

The follower Body is automatically connected to the last joint primitive P1
in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Joint Actuator and Joint Sensor blocks to this Joint.
The default is 0.

The motions of prismatic and revolute primitives are specified in linear and
angular units, respectively.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of the
translation axis. Positive rotation is the follower moving around the rotational
axis following the right-hand rule.

Base Body connector port \

—

Bearing Follower Body connector port

Bearing base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in Bearing has
an entry line. These lines specify the direction of the axes of action of the DoFs
that the Bearing represents.

Name - Primitive
The primitive list states the names and types of joint primitives that make
up the Bearing block: revolute primitives R1, R2, R3, and prismatic
primitive P1.

Axis of action [x y z]

Enter here as a three-component vector the directional axes defining the
allowed motions of these primitives and their corresponding DoF's:



Bearing

See Also

= Prismatic: axis of translation
= Revolute: axis of rotation

The default vectors are shown in the dialog box above. The axis is a directed
vector whose overall sign matters.

To prevent singularities and simulation errors, no two of the revolute axes
can be parallel.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base
Body CS, or the follower Body CS) whose coordinate axes the vector axis of
action is oriented with respect to. This CS also determines the absolute
meaning of forces/torques and motion along/about the joint axis. The
default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics
interprets the topology of your schematic diagram.

~Parameters

AxBs Advanced

[~ Mark as the preferred cut jaint

One jointin each closed loop tapology will be cut automatically.
Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting
during the simulation, select the check box. The default is unselected.
Bushing, Cylindrical, Gimbal, Prismatic, Revolute
See “Modeling Joints” on page 4-17 for more on representing DoF's with Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting.

8-17



Body

Purpose Represent a customizable rigid body
Library Bodies
Descripl'ion The Body block represents a rigid body whose properties you customize. The

representation you specify includes:

G ¢ The body’s mass and moment of inertia tensor

® The coordinates for the body’s center of gravity (CG)
¢ Any number of optional Body coordinate systems (CSs)

A rigid body is defined in space by the position of its CG (or center of mass) and
its orientation in some CS.

Setting Body Initial Conditions The initial position and orientation of a
body are set by the entries in its Body dialog. These initial conditions remain
unchanged; unless, with a Joint Initial Condition Actuator, you change the
initial conditions of the Joint(s) connected to the Body prior to starting the
simulation, or you actuate the Body with a Body Actuator.

In SimMechanics, you enter the body’s properties in two classes, the geometric
properties and the mass properties:

® The geometric properties are defined by the body’s Body CSs.

= The minimum required Body CS is the CS with its origin at the CG. The
CG point specifies both the initial position of the whole body and the origin
of the CG CS. You must also orient the CG CS axes.

= You can place any number of additional Body CSs on a body. You must
define each Body CS by the position of its origin and the orientation of its
CS axes.

= Each connection of a Joint, Constraint/Drive, Actuator, or Sensor block to
a Body requires an anchor point on the Body. This anchor point is one of
the Body CS origins.

= Body CSs on the block available for connections are shown by Body CS
ports [ on the sides of the block. You can show or hide each Body CS on
the block sides.
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The set of a body’s Body CS origins (including the CG CS) defines the
body’s convex hull, one of the visualization shapes available for
representing a body in space.

® The mass properties are defined by the body’s mass and inertia tensor.

The mass is the body’s inertia and controls the translational acceleration
of the CG in response to an applied force.

The inertia tensor measures the distribution of mass density in the body
and controls the rotational acceleration of the body about the CG in
response to an applied torque.

The components of the inertia tensor control the initial orientation of the
body and are always interpreted as being in the CG CS axes. The
orientation of the CG CS axes with respect to another CS external to the
body (the World CS, a CS on a Ground, or a CS on another Body) then
determines the orientation of the body with respect to other bodies or with
respect to World.

The body’s inertia tensor defines its principal axes and moments and its
equivalent ellipsoid, one of the visualization shapes available for
representing a body in space.

Default Initial State of a Body

These two sets of properties determine a body’s initial position and orientation:

¢ The initial position of a body is set by the position of its CG.

¢ The initial orientation is set by its inertia tensor components (in the CG CS)
and the orientation of the CG CS axes with respect to other CSs in the
machine.

The initial conditions of a machine can be changed with Joint Initial Condition
Actuator blocks before starting a simulation. If you do not change the initial
state of a Body before simulation, SimMechanics sets its initial
position/orientation to its Body dialog box entries. SimMechanics also sets the
Body’s initial linear/angular velocities to zero in this case.
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DialogBox and
Parameters «) Block Parameters - Bod - ol x|
Description
Represents a user-defined rigid body. Body defined by mass m, inedia tensor |, and coordinate origins
and axes for center of gravity (CG) and other user-specified Body coordinate systems. This dialog sets
Body Initizl position and onentation, unless Body and/or connected Joints are actualed separaiely.
Mass properties
Mass Inartia
1 |kc1 j Ie-.fem kgrmm 2 j
*with respect to the CG (Center of Gravity) Body coordinate system
- Body coordinate systems
Position | orientation | I I I o
Show Qrigin position Translated from | Components in
port | Portside |Mame vector iy 2] Units arigin of aes of
r Left wilce oo m = | IWORLD = [IWORLD -
= Left L Ccs1 (oo m L CG ; CG ;
g JRont  =les: loog m  >]jco =lce Rd|
oK | Cancel | Help | Apply |
The dialog box has two active areas, Mass Properties and Body Coordinate
Systems.
Mass Mass
Properhes Enter the mass of the body in the first field and choose units in the

pull-down menu to the right. The mass must be a positive, real number or
MATLAB equivalent expression. The defaults are 1 and kg (kilograms).

Inertia tensor

Enter the inertia tensor (with respect to the Body CG CS axes) in the first
field and choose units in the pull-down menu to the right. The tensor must
be a 3-by-3 real, symmetric matrix. The default tensor is eye (3), the
MATLAB 3-by-3 identity matrix. A zero tensor zeros(3,3) defines a point
mass. The units default is kg-m? (kilograms—metersz).
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Body

Coordinate

Systems

Configuring a Body Coordinate System
You set up Body CSs in the Body coordinate systems area:

® The default configuration consists of three Body CSs: the required CG CS
attached to the body’s CG and two other optional Body CSs, called “CS1” and
“CS2”, for connecting Joints, Constraints, or Drivers.

® You can configure the CG CS but not delete it. You also cannot create
additional CG CSs, although you can duplicate the CG CS with a different
name. (See following.)

® The other CSs can be configured or deleted as you want.

¢ Configuring a Body CSs requires two groups of steps:
= positioning the Body CS origin in the Position panel
= orienting the Body CS axes in the Orientation panel.

¢ Defining Body CSs requires referring to other, pre-existing CSs in the model.
In a given Body block, you can refer to Body and grounded CSs in three ways.
The references must be to:

= World
= Other Body CSs on the same body

= The Adjoining CS, the coordinate system on a neighboring body or ground
directly connected to the selected Body CS by a Joint, Constraint, or

Driver.
mcs1 My cs ool My cszim
Body1 Farallel Constraint Bodyz
Selected (S = (S2@Body] Adjoining (S = (S1@Body?

® Toggle between the Position or Orientation panels with the tabs.

Each Body CS is labeled with a name, CG for the CG CS, and CS1, CS2, etc.,
for additional CSs.
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Configuring the Position fields

The Position fields for each Body CS specify the position of that CS’s origin as

a translation vector:

= The numerical components of the vector carry units.

= The origin is displaced from the origin of another, pre-existing CS in your

machine by this translation vector.

= The translation vector’s components are oriented with respect to another

set of CS axes.
Highlight each Body CS to configure it.

r Body coordinate systems

Position | Orientation E

Show Qrigin position Translated from | Components in
part Port side  |Mame vector [xy 7] Units arigin of awes of
i *lco oo m =|worto =]lworo =]
g et =lesr |oo m__ =fcs =lfes [ |
QK J Cancel | Help | Apply |

Origin position vector [x y z]

Enter the translation vector that defines the position of the Body CS’s

origin.

The special entry for the CG CS origin places the entire body.

Units

Choose linear units for the translation vector. The default is m (meters).

Translated from the origin of

In the pull-down menu, choose the other, pre-existing CS in your machine
that defines the starting point for the translation vector. The choices are
WORLD, ADJOINING, and the other Body CSs on this Body. The ending point

of the translation vector is this Body CS’s origin.
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For the CG CS, the default starting-point CS is WORLD. For the additional
Body CSs (CS1, CS2, etc.), the default starting point CS is this Body’s CG.

Components in the axes of

In the pull-down menu, choose the CS whose axes define the orientation of
the translation vector’s components. The choices are WORLD, ADJOINING, and
the other Body CSs on this Body. The translation vector’s components are
projected along the axes of the CS chosen in this column.

For the CG CS, the default orientation CS is WORLD. For the additional Body
CSs (CS1, CS2, etc.), the default orientation CS is this Body’s CG.

Configuring the Orientation Fields
The Orientation fields for each Body CS specify the orientation of that CS’s
triad of axes as a rotation:

The orientation vector specifying the rotation vector has three
components.

The numerical components of the vector carry units.

The rotation is oriented with respect to some other, pre-existing set of CS
coordinate axes in your machine.

The orientation vector’s components are interpreted in the convention of a
rotation representation.

Highlight each Body CS to configure it.

-Body coordinate systems

Position  Orientation ] * = X|x]|F
Show Orientation Relative to Specified using

port | Port side | Name vector Units coordinate system convantion
rolet *lce (pog deg WORLD Fl|euerxvz =]

=
- Len - | CS1 000 deq _:J WIORLD _:J Euler ¥-Y-Z :_]
F [Ront *]csz loog dsg w|[WORLD xl|euerxvz =]

oK J Cancel | Help | Apply |
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Orientation vector

Enter the components of the rotation that defines the orientation of the
Body CS’s axes. The geometric meaning of these components is determined
by the Specified using convention column.

The special entry for the CG CS orients the CG CS axes. Together with the
Inertia tensor entry in Mass properties, the CG CS axes orient the whole
body with respect to another CS in your machine.

Units
Choose angular units for the rotation, degrees or radians. The default is
deg (degrees).

Relative to coordinate system

In the pull-down menu, choose the other, pre-existing CS in your machine
that defines the starting orientation for the rotation. The choices are WORLD,
ADJOINING, and the other Body CSs on this Body.

Specified using convention
In the pull-down menu, choose the representation type for the rotation:

Rotation Type Orientation vector components

Quaternion [n,*sin(0/2) ny*sin(9/2) ny*sin(0/2) cos(06/2)]
3x3Transform 3-by-3 orthogonal rotation matrix R

Euler Rotation angles about: [X-axis Y-axis Z-axis]

Rotation Conventions
There are three generic conventions for representing rotations:

® Euler
The Euler angle convention specifies the rotation of the Body CS axes by
rotating about three axes in a sequence. The components of the 1-by-3 row
vector are the angles of rotation about the X-, Y-, and Z-axes, respectively, in
degrees or radians.
For example, Euler X-Y-Z means, rotate about the original X-axis, then
about the first intermediate Y-axis, and then about the second intermediate
Z-axis. Another example: Euler X-Z-Y means, rotate about the original
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X-axis, then about the first intermediate Z-axis, and then about the second
intermediate Y-axis.

® 3-by-3 Transform

The transform convention specifies the rotation as a dimensionless 3-by-3
orthogonal rotation matrix. The inverse of an orthogonal matrix R is equal
to its transpose: R1=RT.

The columns of R are the (x,y,z) unit vectors of the Body CS axes. The units
menu is inactive.
® Quaternion

The quaternion convention specifies the rotation in angle-axis form as a
dimensionless 1-by-4 row vector:

[n,*sin(0/2) ny*sin(9/2) n,*sin(0/2) cos(6/2)]
n 5 (ny,ny,n;) is a three-component vector of length unity: n*n = n2+ ny2 +
ny,“ =1

The unit vector n specifies the axis of rotation. The rotation angle about that
axis is 0 and follows the right-hand rule.

Managing the Body Coordinate Systems List
The Body coordinate system controls (see the following “Body coordinate
systems controls” figure) allow you to add, duplicate, reorder, and delete Body
CSs on a Body block:
¢ To add a Body CS to the list:

= Highlight an existing Body CS in the list.

= Click the Add button (see the following “See Also” figure).

A new Body CS will appear immediately below the Body CS you
highlighted. New Body CSs are named in sequence after the current ones:
CS3, CS4, etc.

® To duplicate a Body CS in the list:
= Highlight the Body CS you want to duplicate.
= Click on the Duplicate button (see the following “See Also” figure).

A new Body CS with the same configuration but a different name will
appear immediately below the Body CS you highlighted. New Body CSs
are named in sequence after the current ones: CS3, CS4, etc.
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® To change the position of a Body CS in the list:
= Highlight the Body CS whose position you want to change.

= Click on the Up or Down button (see the following “See Also” figure) until
the Body CS is where you want it.

® To delete a Body CS from the list:
= Highlight the Body CS you want to delete.
= Click on the Delete button (see the following “See Also” figure).
The Body CS you highlighted disappears.
® You cannot delete the Body’s CG CS.

Add ¢S Duplicate (S Delete 5 CSUp (S Down

Show port
check box
Body coordinate systemns
_.¢-|‘-._ ‘xl + Il

Plosition | Orientation E

Origin pasition Translated from | Components in
Port side | Mame vactor [y 2] Units origin of axes of
{000 m ~fworo  =flworD =]

Laft LI oG
Ad TEE - (CONE - NN -
jgm >lics2 |oo Jm R | CE R | CE =

/ Qk I Cancal | Help | Apply |

Port side
menu

Body coordinate systems controls

Managing Body CS Ports on a Body Block

To connect a Joint, Constraint/Driver, Actuator, or Sensor block to a Body block
requires an existing and configured Body CS in the Body to anchor the other
block to:
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¢ These other blocks define, constraint, impart, and measure the motion of
bodies with respect to the origin and coordinate axes of Body CSs. Connect
each of these blocks to a Body CS with a connection line.

¢ The actual connection line running from the other block to the Body block
must be anchored to a displayed Body CS Port [H on the side of the Body
block in the model window.

Body (S Port

gos1 My cszm‘/

Body

¢ A displayed Body CS Port on a Body block indicates a Body CS with the
displayed name configured internally within the Body block.

¢ Not all the Body CSs configured inside a Body block need to be displayed,
however.

See the “Body coordinate systems controls” figure preceding.

Show port

Select this check box for any Body CS to create a corresponding Body CS
Port M on the side of the Body block. The Body CS on that line in the Body
CS list is now accessible for connection to other blocks.

Unselect this check box to remove the Body CS Port corresponding to that
Body CS on that line in the list.

The defaults are: unselected for CG, selected for CS1 and CS2.
To apply your choices to the displayed Body block, click Apply.

Port side

From the pull-down menu, choose which side of the Body block you want
the Body CS Port for that Body CS to be placed on, Left or Right.

The defaults are Left for CG and CS1 and Right for CS2.

To apply your choices to the displayed Body block, click Apply.

See Also Body Actuator, Body Sensor, Body Sensor, Ground, Mechanical Branching Bar
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See “Representing Body Positions and Orientations” on page 3-2 for more
details on body coordinate system rotations.

See “Modeling Bodies” on page 4-8, “Creating Body CS Ports” on page 4-16, and
“Choosing Visualization Options in SimMechanics” on page 6-2 for more on
setting up Bodies in machines.

See “Modeling Sensors” on page 4-60for setting general initial conditions
(positions and velocities) of DoF's in a machine.



Body Actuator

Purpose
Library

Description

kS

Apply force/torque to a body
Sensors & Actuators

The Body Actuator block actuates a Body block with a generalized force signal,
representing a force/torque applied to the body:

¢ Force for translational motion

® Torque for rotational motion

The generalized force is a function of time specified by a Simulink input signal.
This signal can be any Simulink signal, including a signal feedback from a
Sensor block.

The Body Actuator applies the actuation signal in the reference coordinate
system (CS) specified in the block dialog box.

The inport is the Simulink input signal. The output is the connector port you
connect to the Body block you want to actuate.

You should carefully distinguish the Body Actuator from the Driver blocks:

¢ The Body Actuator block applies generalized forces to one body in a specified
reference CS.

¢ The Driver blocks drive relative degrees of freedom between pairs of bodies.

Other Ways to Actuate Bodies

The Body Actuator block actuates a Body with force/torque signals only. To
actuate a Body with motion signals or initial conditions, or to drive the relative
degrees of freedom between a pair of Bodies, see “Actuating a Joint” on

page 4-44 and “Joint Actuator Example: Body Driver” on page 4-46.

The mech_body_driver model from the Demos library shows how to drive the
relative DoF's between a pair of bodies. To actuate one body alone, use this
model and replace the second Body block with a Ground block. To set body
initial conditions, replace the second Body block with a Ground block and the
Joint Actuators with Joint Initial Condition Actuators.
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Dialog Box and
Parameters

Actuation

Generalized
Forces

8-30

<) Block Parameters : Body Al - o] x|

rDescription

Actuates a Body with generalized farceftargue signal. Vectar
components specified with respect to reference coordinate
system. Input is a Simulink signal. For Body mation ar initial
candition actuation, press Help.

rActuation
Actuating body at coordinate systern {see block diagram)

Using reference coordinate system IAbsqute farld) vI

Generalized forces:

I~ Applytorque T-1m 7
W Applyforce [ v, 2] [N =
Ok | Cancel | Help | Apply |

The dialog box has one active area, Actuation.

Actuating body at coordinate system

This field is not active. You choose the Body CS at which to apply the
actuation by connecting it to the Body Actuator.

Using reference coordinate system

In the pull-down menu, choose the coordinate system (CS) in which the
actuating force/torque is interpreted: either the Local (Body CS) to which
the Actuator is connected or the default Absolute (World).

You can apply a force, a torque, or both generalized forces to a body.

If you apply both, you need to bundle the torque and force vectors into a
6-component signal, in the order shown in the dialog box.

Apply torque
Select the check box if part or all of the actuating signal is a rotational
torque. The default is unselected. The Simulink torque input is a
3-component bundled signal.

In the pull-down menu, choose units for the actuating torque. The default
is N-m (Newton-meters).
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Example

See Also

Apply force

Select the check box if part or all of the actuating signal is a translational
force. The default is selected. The Simulink force input is a 3-component
bundled signal.

In the pull-down menu, choose units for the actuating force. The default is
N (Newtons).

Here is a Body Actuator connected to a Body:

m oo My cszig
Body \ Frismatic
Body actuated

Simulink signal in

Actuation applied at Body (S

Body Actuator

You must connect the Body Actuator to the Body at one of that Body’s attached
Body CSs, at the corresponding Body CS Port. The actuation signal acts on the
Body at that Body CS’s origin.

Body, Body Sensor, Driver Actuator, Joint Actuator, Joint Initial Condition
Actuator, Mechanical Branching Bar

See “Representing Body Positions and Orientations” on page 3-2 for more
details on body coordinate system rotations.

See “Actuating a Joint” on page 4-44 and “Joint Actuator Example: Body
Driver” on page 4-46.

See “Creating Bodies and Grounds” on page 8-4 and “Constraining and Driving
Motion” on page 8-6.

In Simulink, see the Signal Routing Library and the Sources Library.
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Purpose
Library

Description

$Ix"

8-32

Measure body motion
Sensors & Actuators

The Body Sensor block detects the position, velocity, and/or acceleration of a
body represented by a Body block.

The Body Sensor measures the motion in the reference coordinate system (CS)
specified in the block dialog box.

You can measure one, two, or all three of these motion types:

® Translational motion of a body, in terms of linear position, velocity, and/or
acceleration vectors

¢ Rotational motion of a body, in terms of angular velocity and/or acceleration
vectors

® Rotational motion of a body, in terms of a 3-by-3 rotation matrix R

The input is the connector port connected to the Body being sensed. The outport

is a set of Simulink signals or one bundled Simulink signal of the position,

velocity, and/or acceleration vector(s) and/or the rotation matrix of the body.

A body’s orientation rotation matrix R relates vector components measured in
the body CS and in the inertial World CS by [R] - V4 = V. The column vector vy,
lists the vector V’s three components measured in the body CS. The column
vector Vg lists the vector V’s three components measured in the World CS.



Body Sensor

Dialog Box and
Parameters +) Block Parameters : Body S =10l x|

- Description
Measures linearangular position, velocity, andiar acceleration of
a Body with respectto a specified coordinate systerm. Optional
rotation matrix for Body arientation. Output is Simulink signal.
Multiple output signals can be hundled into one signal.

rMeasurements

Measuring Body coordinate system (see block diagrarm)

With respect to coordinate system IAbsqute orld) VI

~ [m ~]
T [y '] velocity mis -

™ [ax By 8z'] Angular velocity Idegis vl

™ [3x3] Ratation matrix

™ [ y" 2'] Acceleration ImIs"z vI
™ [Bx" By"; B2"] Angular acceleration Idegrs"E vl

i Qutput selected parameters as one signal

Ok | Cancel | Help | Apply |

The dialog box has one active area, Measurements.

Measurements Measuring Body coordinate system

This field is not active. You choose the Body CS at which to measure the
motion by connecting it to the Body Sensor.

With respect to coordinate system
In the pull-down menu, choose the coordinate system in which the body
motion is measured: either the Local (Body CS) to which the Sensor is
connected or the default Absolute (World).

In the Absolute case, the rotation matrix R and the motion vectors have
components measured relative to the inertial World CS axes. In the Local
case, the same body motion signals are premultiplied by the body’s inverse
orientation rotation matrix R'! = RT.

8-33



Body Sensor

Select the check box(es) for each of the possible measurements you want to
make:

¢ Linear motion: Position, Velocity, and Acceleration vectors

¢ Angular motion: Angular velocity and Angular acceleration vectors and
Rotation matrix:

= The Rotation matrix is the 3-by-3 orthogonal rotation matrix R:

Ry B9 B3

Rgq Rgg Ryg
Rgy Rgg Ry

representing rotational orientation and satisfying RTR = RRT = I. The
components are output column-wise as a 9-component row vector: (R4,

R21, R31, R12, ).

= If you choose the With respect to coordinate system as Absolute
(World), the Rotation matrix measures the body’s rotational orientation
with respect to the World CS, relative to its initial orientation. If you
choose the With respect to coordinate system above as Local (Body
CS), the Rotation matrix returns the 3-by-3 identity matrix: RTR=1

Each vector measurement is a row vector in the Simulink output signal. The
selected signals are ordered in the same sequence as the dialog box.

In the pull-down menus, choose the units for each of the measurements you
want:

e Linear motion: the defaults are m (meters), m/s (meters/second), m/s2
(meters/second?), and N (Newtons), respectively, for Position, Velocity, and
Acceleration.

® Angular motion: the defaults are deg/s (degrees/second) and deg/ s2
(degrees/secondZ), respectively, for Angular velocity and Angular
acceleration. The Rotation matrix is dimensionless.

Output selected parameters as one signal

Select this check box to convert the output signals into a single bundled
signal. The default is selected. If you unselect it, the Body Sensor block will
grow as many Simulink outports as there are active signals selected, in the
same order top to bottom, as in the dialog box.
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Example

See Also

If the check box is selected, the Simulink signal out has all the active
(selected) signals ordered into a single row vector, in the same order you see
in the dialog box. Unselected components are removed from the vector

signal.

Here is a Body Sensor connected to a Body:

Body (S

L) [y ?&CSZ

Brody1

Body Sensor

-

FPrismatic

Body measured

a— Simulink signal out

You must connect the Body Sensor to the Body at one of that Body’s attached
Body CSs, at the corresponding Body CS Port. The sensor measures the motion

of that Body CS.

Body, Body Actuator, Constraint & Driver Sensor, Joint Sensor, Mechanical

Branching Bar

See “Representing Body Positions and Orientations” on page 3-2 for more
details on body coordinate system rotations.

See “Representing Body Positions and Orientations” on page 3-2 and
“Modeling Sensors” on page 4-60.

In Simulink, see the Signal Routing Library and the Sinks Library.
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Purpose

Library

Description

ke
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Models a damped linear oscillator force between two bodies
Force Elements

The Body Spring & Damper block models the force of a damped spring acting
between two bodies. By Newton’s third law, the spring applies equal and
opposite forces to the two bodies. You can use this Force Element block to model
any linear (Hooke’s law) force, with constant coefficients, that acts between a
pair of bodies. One of the Bodies can be a Ground.

Caution Both the spring and the damper force act only along the axis
connecting the two bodies.

The Body Spring & Damper block does not include the degree of freedom
(DoF) needed to model the relative motion of the connected bodies. You need to
add a Joint block between the Bodies to represent one, two, or three prismatic
primitives. You can use Prismatic blocks or a Custom Joint block to
accomplish this. The Body Spring & Damper block and Joints block must form
a closed loop together with the two Bodies.

Body Spring and Damper Theory

You connect this block to each Body, A or B, at a Body coordinate system (CS).
If r5 and rg are the positions of these Body CSs, the relative position vector
connecting them is r = rg — r5. The distance of separation is |r|. The relative
velocity is v = dr/dt. Then the vector force that body A exerts on body B is

F =—k(|r| -ro)r/|r|) - bo*r)a!/|r|?)

The first term represents the spring or linear displacement force. The second
represents the damper or velocity dissipation force, which acts only along the
direction of r. Thus the damper is equivalent to a dashpot, not a viscous
medium.

You specify the spring constant &, the natural spring length (offset) ry, and the
damping constant b. The natural length is the length of the spring with no

forces acting on it and physically must be nonnegative: ry > 0. A stable spring
requires £ > 0. A damping representing dissipation and respecting the second



Body Spring & Damper

Dialog Box and
Parameters

law of thermodynamics requires & > 0. You can use a negative b to represent
energy pumping.

The Spring and Damper Force in Singular Cases
In certain cases, the force formula breaks down, and SimMechanics uses
special rules to determine the force.

¢ Ifroand v # 0, and r = 0 at some instant, both terms in the force become
singular. The spring force is reprojected along the velocity vector. That is,
v/|v| replaces r/|r| in both terms, once in the first term and twice in the
second. If the state r = 0 does not persist for more than an instant, this
replacement has no effect on the motion.

¢ Ifrg # 0, and both r and v = 0 at some instant, the force direction is
undefined. The simulation stops with an error.

To avoid singularities in the initial state of motion, be sure to set the bodies’
initial conditions of position and velocity to physically sensible values.

<} Block Parameters: Body Sprin - ol x|

- Description
Models a damped linear oscillator between twa Bodies, eguivalentto a
translational spring and damper. The farce F between the bodies is
projected along the axis connecting the Body coordinate systems and
is a function of the relative displacement r and velocity v of these Body
coordinate systems, given by F = -k*(r-r0} - b*. The parameters 0, k,
and b represent the spring's natural length, the spring constant, and
the damper constant, respectively.

r Parameters
Spring constant (k) 1]
Damper constant by 1]
Spring natural length {0y 1]

- Units
Fosition: Im LI
WVelocity: ImIS LI
Faorce: IN LI

(0]34 | Cancel | Help | Apply |
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Parameters

Units

See Also
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The dialog box has two active areas, Parameters and Units.

Spring constant (k)
Enter the linear spring force constant k. The default is 0.

The units for £ are derived implicitly from your choice of position and force
units.

Damper constant (b)
Enter the linear damping force constant 6. The default is 0.

The units for b are derived implicitly from your choice of velocity and force
units.

Spring natural length (r0)
Enter the spring’s natural length (offset) ry. The default is 0.

Position

In the pull-down menu, choose units for the relative position vector r. The
default is m (meters).

Velocity

In the pull-down menu, choose units for the relative velocity vector v. The
default is m/s (meters/second).

Force

In the pull-down menu, choose units for the spring-damper force F acting
between the bodies. The default is N (Newtons).

Body, Body Actuator, Body Sensor, Custom Joint, Ground, Joint Initial
Condition Actuator, Joint Spring & Damper, Prismatic

See “Modeling Force Elements” on page 4-55.
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Purpose
Library

Description

r
]

Represent a composite joint with three translational and three rotational DoFs
Joints

The Bushing block represents a composite joint with three translational
degrees of freedom (DoF's) as three prismatic primitives and three rotational
DoFs as three revolute primitives. There are no constraints among the
primitives. Unlike Six-DoF, Bushing represents the rotational DoFs as three
revolutes, rather than as one spherical.

Caution A joint with three revolute primitives becomes singular if two or
three of the rotation axes become parallel (“gimbal lock”). A joint with two or
three prismatic primitives becomes singular if two or three of the translation
axes become parallel. The simulation stops with errors in these cases.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Bushing block is assembled: the origins of
these Body CSs must lie along the primitive axes, and the Body CS origins on
either side of the Joint must be spatially collocated points, to within assembly
tolerances.

You must connect any Joint block to two and only two Body blocks, and Joints

have a default of two connector ports for connecting to base and follower
Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the
bodies themselves. You must specify reference CSs to define the directions of
the joint axes.
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DialogBox and
Parameters <} Block Parameters : Bushing - ol x|

rDescription

Represents three rotational and three translational degrees of
freedom. The Follower (F) translates along three primitive prismatic
axes (P1, P2, P3) and rotates around three primitive revolute axes (R1,
R2, R3) relative to the Base (B) Body. P1 attached to Base. R3
attached to Follower. Listed order of primitives is arder of motion
during simulation. Sensar and actuator ports can be added.
Basze-Faollower sequence and axes directions determine sign of
forward mation. This joint hecomes singular if twa prismatics ar two
revalutes align.

r Connection parameters
Current hase: =not connected=
Current follower: =not connected=
Murmber of sensor f actuator ports: lﬂ

- Parameters
Axes | Advanced |
Axis of action

Marme | Prirmitive By 2] Reference csys
F1 | Prismatic|[1 00] WORLD hd
P2 | Prismatic [01 0] WORLD hd
P3| Prismatic [0 0 1] WORLD hd
F1 | Rewolute |[100] WORLD hd
R2 | Rewolute |[010] WORLD hd
R3 | Rewolute |[001] WORLD hd

Ok | Cancel | Help | Apply |

The dialog box has two active areas, Connection parameters and

Parameters.
Connection Current base
Parameters When you connect the base (B) connector port on the Bushing block to a

Body CS Port on a Body, this parameter is automatically reset to the name
of this Body CS. See the following “Bushing base and follower Body
connector ports” figure.

The base Body is automatically connected to the first joint primitive P1 in
the primitive list in Parameters.
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Parameters

Current follower

When you connect the follower (F) connector port on the Bushing block to
a Body CS Port on a Body, this parameter is automatically reset to the
name of this Body CS. See the following “Bushing base and follower Body
connector ports” figure.

The follower Body is automatically connected to the last joint primitive R3
in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Joint Actuator and Joint Sensor blocks to this Joint.
The default is 0.

The motions of prismatic and revolute primitives are specified in linear and
angular units, respectively.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of the
translation axis. Positive rotation is the follower moving around the rotational
axis following the right-hand rule.

Base Body connector port \C

Gv\Follower Body connector port

Bushing

Bushing base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in Bushing has
an entry line. These lines specify the direction of the axes of action of the DoF's
that the Bushing represents.

Name - Primitive

The primitive list states the names and types of joint primitives that make
up the Bushing block: prismatic primitives P1, P2, P3, and revolute
primitives R1, R2, R3.
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Axis of action [x y z]
Enter here as a three-component vector the directional axes defining the
allowed motions of these primitives and their corresponding DoF's:

= Prismatic: axis of translation
= Revolute: axis of rotation

The default vectors are shown in the dialog box above. The axis is a directed
vector whose overall sign matters.

To prevent singularities and simulation errors, no two of the revolute axes
and no two of the prismatic axes can be parallel.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base
Body CS, or the follower Body CS) whose coordinate axes the vector axis of
action is oriented with respect to. This CS also determines the absolute
meaning of forces/torques and motion along/about the joint axis. The
default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics
interprets the topology of your schematic diagram.

~Parameters

Axps Advanced

[ mark as the preferred cut joint

Cne joint in each closed loop tapology will he cut automatically.
Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting
during the simulation, select the check box. The default is unselected.

See Also Bearing, Cylindrical, Gimbal, Prismatic, Revolute, Six-DoF
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See “Modeling Joints” on page 4-17 for more on representing DoF's with Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting.
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Purpose
Library

Description

{10

DialogBox and
Parameters

See Also
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Create a Physical Modeling connector port for a subsystem
Utilities

The Connection Port block, placed inside a subsystem composed of
SimMechanics blocks, creates a SimMechanics open round connector port © on
the boundary of the subsystem. Once connected to a connection line, the Port
becomes solid e.

You connect individual SimMechanics blocks and subsystems made of
SimMechanics blocks to one another with SimMechanics connection lines,
instead of normal Simulink signal lines. These are anchored at the open, round
connector ports O. Subsystems constructed out of SimMechanics blocks
automatically have such open round connector ports. You can add additional
connector ports by adding Connection Port blocks to your subsystem.

Block Parameters: Connection: x|

— PMC_Part

Physical Modeling connection block

=

Port number:
|1

Port location on parent subsysten: IIeft ;I

QK I Cancel | Help Apply |

Port number

This field labels the subsystem connector port created by this block.
Multiple connector ports on the boundary of a single subsystem require
different numbers as labels. The default value for the first Port is 1.

Port location on parent subsystem

Choose here on which side of the parent subsystem boundary the Port is
placed. The choices are left or right. The default choice is left.

In Simulink, see Creating Subsystems.



Constraint & Driver Sensor

Purpose
Library

Description

o)

Dialog Box and
Parameters

Measure constraint force/torque between a pair of constrained bodies
Sensors & Actuators

The Constraint & Driver Sensor block measures the force/torque of constraint
(reaction force/torque) between a pair of bodies. You connect the block to the
Constraint or Driver block connected between the two Bodies. The output
signal is the reaction force/torque.

The Constraint & Driver Sensor measures the reaction force/torque in the
reference coordinate system (CS) specified in the block dialog box. The
Constraint or Driver block connects a base and a follower Body. You choose in
the dialog box to measure the reaction force/torque on either the base or the
follower Body.

The input is the connector port connected to the Constraint or Driver block you
want to sense. The outport is a set of Simulink signals or one bundled Simulink
signal of the reaction force/torque vector(s).

A body’s orientation rotation matrix R relates vector components measured in
the body CS and in the inertial World CS by [R] - V4 = V. The column vector vy
lists the vector V’s three components measured in the body CS. The column
vector Vg lists the vector V’s three components measured in the World CS.

<} Block Parameters : Constralil - o] x|

rDescription

Measures ConstraintDriver reaction forcesttorques between Base
(By and Faollower {F) Bodies with respect to selected coordinate
system. Output is Simulink signal. Farce and tarque vectars can he
muxed.

~ Measurements

Reactions measured on: Base hd
With respect to coordinate systern: [Absolute (orld) hd
¥ Reaction tarque r-m i
IV Reaction force IN i
¥ Output selected parameters as one signal

Ok | Cancel | Help | Apply |
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Measurements

8-46

The dialog box has one active area, Measurements.

Reactions measured on

In the pull-down menu, choose to measure the reaction force/torque on the
base (B) or follower (F) Body. The default is Base.

With respect to coordinate system

In the pull-down menu, choose the CS in which the reaction force/torque or
motion is interpreted. The default is Absolute (World).

In the Absolute case, the force vectors have components measured relative
to the inertial World CS axes. In the Local case, the same force vector
signals are premultiplied by the inverse rotation matrix R'! = RT for the
Body selected in Reactions measured on.

Reaction torque
Select the check box if you want to measure the reaction torque. The
default is selected. The torque is a row vector in the Simulink output
signal.

In the pull-down menu, choose the units for the reaction torque. The
default is N-m (Newton-meters).

Reaction force

Select the check box if you want to measure the reaction force. The default
is selected. The force is a row vector in the Simulink output signal.

In the pull-down menu, choose the units for the reaction force. The default
is N (Newtons).

Output selected parameters as one signal

Select this check box to convert the output signals into a single bundled
signal. The default is selected. If you unselect it, the Constraint & Driver
Sensor block will grow as many Simulink outports as there are active
signals selected, in the same order top to bottom, in the dialog box.

If the check box is selected, the Simulink signal out has all the active
signals bundled into a single row vector, ordered in the order shown in the
dialog box. The type of the signal components depends on which
measurements are active (selected).
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Example

See Also

Here is a Constraint & Driver Sensor connected to a Gear Constraint, which
connects and constraints two Bodies:

—os Mg ooz g
oy (=21 G Coe —
Body1

Gear Constraint Body2

\ Constraint/Driver measured
7 Constraint & Driver
Sensor
/ Simulink signal out

You must add a Sensor port (connector port) to the Constraint/Driver block to
connect the Constraint & Driver Sensor to it. The base (B)-follower (F) Body
sequence on the two sides of the Joint determines the sense of the Constraint
& Driver Sensor data.

Body Sensor, Driver Actuator, Joint Sensor, Mechanical Branching Bar

See “Representing Body Positions and Orientations” on page 3-2 and
“Modeling Sensors” on page 4-60.

In Simulink, see the Signal Routing Library and the Sinks Library.
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Continuous Angle

Purpose Convert discontinuous, bounded angular output from a sensor to continuous,
unbounded angular output

Library Utilities
Description The Continuous Angle block converts a measured angle signal restricted to the
semi-open interval (-180°, +180°] degrees or (—r,+n] radians to a continuous,
or unbounded angle not restricted to any interval. This block requires the angle
fe and the angular velocity as input signals. The continuous, unbounded angle is

the output signal.

The Joint Sensor block outputs the absolute rotational measurement of
revolute motion as a bounded angle in the interval (-180°, +180°] degrees or
(—m,+r] radians. Motion that crosses the boundaries of this interval causes
discontinuities in the measured angle, from +180° to —180° or vice versa. Use
the Continuous Angle block if you want to convert this restricted angular
measurement to an unbounded measurement.

Dialog Box and
Parameters Block Parameters: Continuous A x|

— Subspstem [mask] [link]

Outputs a continuous, unbounded angle given a discontinuous, bounded
angle and the angular velocity. Choose units for the angle and the angular
welocity [rate).

=

Angle measured i |EE T |
Rate measured in: Ideg,.n’s ;I

QK I Cancel | Help | Apply |

The dialog box has one active area, Parameters.

Parameters Angle measured in

Choose the units for the input angle and the output continuous angle,
either deg (degrees) or rad (radians). The default is deg.

Rate measured in

Choose the units for the input rate (angular velocity), either deg/s
(degrees/second) or rad/s (radians/second).
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Example

|

The tutorial “A Four Bar Mechanism” in the “Building and Visualizing Simple
Machines” chapter produces this angular motion output for the Revolute3 and
Revolute 2 joints:

FET Y R

sl yngle

The Revolute3 angle is restricted to the interval (-180°, +180°], so values
passing either limit of this interval are mapped to the opposite end of the
interval. The Revolute2 angle is not restricted, but instead touches genuine
turning points in its motion.

After passing the angles and angular velocities through Continuous Angle
blocks, the Revolute3 angular motion appears different:
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|lemoe o ARE BAE &

Revolute3’s motion is unchanged, but its angle is now continuous, with no
interval restriction. Revolute2’s angle is unchanged.

See Also Joint Sensor
See “Additional Useful Blocks” on page 8-7.
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Custom Joint

Purpose Represent a customizable composite joint with up to three translational and up
to three rotational degrees of freedom

Library Joints
Description The Custom Joint block is a composite joint that you can customize with a
_ specified combination of primitives (prismatic, revolute, or spherical)
I representing the most general and unconstrained degrees of freedom (DoF's) in

three dimensions:

¢ Up to three translational DoF's as three prismatic primitives
¢ Up to three rotational DoF's:

= As a single spherical primitive

= As one, two, or three revolute primitives

The sense of rotational DoF's is defined by the right-hand rule. One spherical
or three revolutes together form a right-handed system.

You can add, configure, and delete these primitives from the Custom Joint,
with a minimum and default of one primitive. The properties of each primitive
are the same as the individual Joints of the same names.

Caution A joint with two or three revolute primitives becomes singular if two
or three of the rotation axes become parallel (“gimbal lock”). A joint with two
or three prismatic primitives becomes singular if two or three of the
translation axes become parallel. The simulation stops with errors in these
cases.

The Custom Joint block’s primitives are assembled: you must connect each side
of the Joint block to a Body block at a Body coordinate system (CS) point, and
the origins of these Body CSs must be spatially collocated points, within
assembly tolerances.

You can connect Actuator and Sensor blocks to a Custom Joint, with each
Actuator and Sensor connecting to an individual primitive. You cannot connect
an Actuator to a spherical primitive.
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You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies.

Any Joint block represents only the abstract relative motion of two bodies, not
the bodies themselves. You must specify a reference CS to define the direction
of the joint axes.

Dialog Box and
Parameters <} Block Parameters : Custom J =0l x|

rDescription

Represents general user-defined joint with multiple degrees of
freedom. Connects twa Bodies with combination of prismatic,
revalute, andfor spherical primitives. This Joint limited to maximum of
six DoF =: up to three rotational DoF s and up to three translational
DoFs. First primitive attached to Base (B). Last primitive attached to
Follower (F). Listed order of primitives is arder of motion during
simulation. Sensor and actuator ports can he added. Spherical
primitive cannot be actuated. Base-Follower sequence and axes
directions determine sign of forward mation.This joint becomes
singular if two prismatics or twa revolutes align.

r Connection parameters
Current hase: =not connected=
Current follower: =not connected=
Murmber of sensor f actuator ports: lﬂ

 Parameters
Aues | Advanced | = el sl
Axis of action
Mame - Primitive [y 2] Reference cays
R1 - Revolute LI o] WORLD LI
Ok | Cancel | Help | Apply |

The dialog box has two active areas, Connection parameters and

Parameters.
Connection Current base
Parameters When you connect the base (B) connector port on the Custom Joint block to

a Body CS Port on a Body, this parameter is automatically reset to the
name of this Body CS. See the following “Custom Joint base and follower
Body connector ports” figure.

8-52



Custom Joint

Parameters

The base Body is automatically connected to the first joint primitive in the
primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Custom Joint block
to a Body CS Port on a Body, this parameter is automatically reset to the

name of this Body CS. See the following “Custom Joint base and follower

Body connector ports” figure.

The follower Body is automatically connected to the last joint primitive in
the primitive list in Parameters.
Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Joint Actuator and Joint Sensor blocks to this Joint.

The default is 0. A spherical primitive cannot be connected to an Actuator.

The motion of a prismatic primitive is specified in linear units. The motion
of a revolute primitive is specified in angular units. The motion of a
spherical primitive is three DoF's specified in quaternion form.

The base (B)-follower (F) Body sequence determines the sense of positive
motion:

¢ Positive translation is the follower moving in the direction of the translation
axis.

¢ Positive rotation is the follower rotating in the right-handed sense about the
rotation axis.

® Positive rotation is the follower rotating in the right-handed sense as shown
by the motion figure in the Spherical block reference page.

G‘\Follower Body connector port

Custom Joint

Base Body connector port

Custom Joint base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.
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The entries on the Axes pane are required. Each DoF primitive in Custom
Joint has an entry line. These lines specify the direction of the axes of action of
the DoFs that the Custom Joint represents.

- Parameters
Aes | Advanced | :"lxl t | ¥
Axis of action
Mame - Primitive [y 2] Reference cays
R1 - Revolute LI o] WORLD LI
ok | cancel Help Apply

Name - Primitive
In the pull-down menu, select a label and primitive type for this DoF. Up
to three prismatic primitives P1, P2, P3 are allowed. The rotational DoF's
are represented by up to three revolute primitives: R1, R2, R3. A spherical
primitive S can take all three allowed rotational DoF's instead.

The default value is R1 - Revolute.

Axis of action [x y z]
Enter here as a three-component vector the directional axis defining the
allowed motion of this primitive and its corresponding DoF:
= Prismatic: axis of translation
= Revolute: axis of rotation
= Spherical: field is not active
The default vector is [0 0 1]. The axis is a directed vector whose overall

sign matters.

To prevent singularities and simulation errors, no two of the revolute axes
and no two of the prismatic axes can be parallel.
Reference csys

Using the pull-down menu, choose the coordinate system (World, the base
Body CS, or the follower Body CS) whose coordinate axes the vector axis of
action is oriented with respect to. This CS also determines the absolute
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meaning of forces/torques and motion along/about the joint axis. The
default is WORLD.

The field is not active for a spherical primitive.

Managing the Joint Primitives List in a Custom Joint
The Custom Joint primitives list controls (see the following “Custom Joint
primitives list controls” figure) allow you to add, reorder, and delete joint
primitives in a Custom Joint block:
® To add a joint primitive to the primitives list:

= Highlight an existing primitive name in the list.

= Click on the Add button (see the following “Custom Joint primitives list
controls” figure).

A new primitive will appear immediately below the primitive you
highlighted.

® To change the position of a joint primitive in the list:
= Highlight the primitive whose position you want to change.

= Click on the Up or Down button (see the following “Custom Joint
primitives list controls” figure) until the primitive is where you want it.

¢ To delete a joint primitive from the list:
= Highlight the primitive you want to delete.

= Click on the Delete button (see the following “Custom Joint primitives list
controls” figure).

The primitive you highlighted disappears.
® Custom Joint requires at least one primitive, which you cannot delete.
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Primitive Up
Add wimmve Primitive Down
r Parameters }
Anes | Advanced |
Axis of action
Mame - Prirmitive [y z] Reference cays
R1-Revolute ¥ |[1npq) WORLD |

P1 - Prismatic

Ok | Cancel Help | Apply |

Custom Joint primitives list controls

The Advanced pane is optional. You use it to control the way SimMechanics
interprets the topology of your schematic diagram.

~ Parameters

fwps  Advanced :"l }(l 1 | ¥ |

[T Mark as the preferred cut joint

Cne joint in each closed loop topology will be cut automatically.
Check hoxto make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting
during the simulation, select the check box. The default is unselected.

See Also Bushing, Gimbal, Joint Actuator, Joint Initial Condition Actuator, Joint
Sensor, Joint Stiction Actuator, Prismatic, Revolute, Six-DoF, Spherical
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Custom Joint

See “Modeling Joints” on page 4-17 for more on representing DoF's with Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting.
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Cylindrical

Purpose Represent a composite joint with one translational DoF and one rotational
DoF, with parallel translation and rotation axes

Library Joints
Description The Cylindrical block represents a composite joint with one translational
degree of freedom (DoF) as one prismatic primitive and one rotational DoF as
,:l: one revolute primitive. The translation and rotation axes must be parallel.
I You must connect each side of the Joint block to a Body block at a Body

coordinate system (CS) point. The Cylindrical block is assembled: the origins of
these Body CSs must lie along the primitive axes, and the Body CS origins on
either side of the Joint must be spatially collocated points, to within assembly
tolerances.

You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the
bodies themselves. You must specify reference CSs to define the directions of
the joint axes.
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Cylindrical

DialogBox and
Parameters

Connection
Parameters

<} Block Parameters : Cylindricf

rDescription

=10 x|

Represents one translational and one rotational degrees of freedam.
Restricts the Follower (F) to move relative to the Base (B) Body along
and around & comman axis P1-R1. Primitive axes P1 and R1 must be
aligned. P1 attached to Base. R1 attached to Follower. Listed arder of
primitives is order of motion during simulation. Sensar and actuator
ports can be added. Base-Follower sequence and axis direction
determine sign of forward motion.

r Connection parameters

Current hase: =not connected=

Current follower: =not connected=

Murmber of sensor f actuator ports: ID 3:

 Parameters
Axes | Advanced |

Axis of action
Mame | Primitive [y 2] Reference csys
F1 Frismatic |[1 0 0] WORLD hd
F1 | Rewolute |[100] WORLD hd

Ok | Cancel | Help | Apply

Current base

The dialog box has two active areas, Connection parameters and
Parameters.

When you connect the base (B) connector port on the Cylindrical block to a
Body CS Port on a Body, this parameter is automatically reset to the name
of this Body CS. See the following “Cylindrical base and follower Body

connector ports” figure.

The base Body is automatically connected to the first joint primitive P1 in

the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Cylindrical block
to a Body CS Port on a Body, this parameter is automatically reset to the
name of this Body CS. See the following “Cylindrical base and follower

Body connector ports” figure.
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Cylindrical

Parameters

8-60

The follower Body is automatically connected to the last joint primitive R1
in the primitive list in Parameters.
Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Joint Actuator and Joint Sensor blocks to this Joint.
The default is 0.

The motions of prismatic and revolute primitives are specified in linear and
angular units, respectively.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of the
translation axis. Positive rotation is the follower moving around the rotational
axis following the right-hand rule.

Base Body connector port \C
Cylindrical\ﬂllower Body connector port

Cylindrical base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in Cylindrical
has an entry line. These lines specify the direction of the axes of action of the
DoF's that the Cylindrical represents.
Name - Primitive

The primitive list states the names and types of joint primitives that make

up the Cylindrical block: prismatic revolute P1 and revolute primitive R1.
Axis of action [x y z]

Enter here as a three-component vector the directional axes defining the

allowed motions of these primitives and their corresponding DoF's:

= Prismatic: axis of translation

= Revolute: axis of rotation



Cylindrical

The default vectors are shown in the dialog box above. The axes are
directed vectors whose overall sign matters.

The two axes P1 and R1 in Cylindrical must be aligned.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base
Body CS, or the follower Body CS) whose coordinate axes the vector axis of
action is oriented with respect to. This CS also determines the absolute
meaning of forces/torques and motion along/about the joint axis. The
default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics
interprets the topology of your schematic diagram.

~Parameters

Axps Advanced

[ tark as the preferred cut joint

Cne joint in each closed loop tapology will be cut automatically.
Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting
during the simulation, select the check box. The default is unselected.

See Also Disassembled Cylindrical, Prismatic, Revolute, Screw
See “Modeling Joints” on page 4-17 for more on representing DoF's with Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting.
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Disassembled Cylindrical

Purpose

Library

Description

711

8-62

Represent a disassembled cylindrical joint, with one translational DoF and one
rotational DoF along and about misaligned axes, with no constraints

Joints/Disassembled Joints

The Disassembled Cylindrical block represents a composite joint, one
translational and one rotational degrees of freedom (DoF) along and about a
pair of specified misaligned axes between two bodies. SimMechanics
automatically assembles (aligns) the two axes at simulation start.

A cylindrical joint is composite, with two DoF's and a single specified axis: a
prismatic primitive translating along the axis, and a revolute primitive
rotating about the axis. There are no constraints between the two primitives.

This block is disassembled: you must connect each side of the Joint block to a
Body block at a Body coordinate system (CS) point, but the origins of these
Body CSs do not need to be spatially collocated points or lie along a joint axis.

You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies. The disassembled translation-rotation joint axes are associated with
the base and follower Bodies, respectively.



Disassembled Cylindrical

|

You can only use a Disassembled Joint block to close aloop. One loop must have
no more than one disassembled joint. You cannot connect an Actuator or Sensor
to a Disassembled Joint.

Disassembled cylindrical axes of follower (blue) and base (red)
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Disassembled Cylindrical

DialogBox and

Parameters <} Block Parameters : Disassembled _ ol x|
rDescription
Creates two misaligned cylindrical joints, ane attached to the base (B) and other
attached to the fallower {F) Body. Axes and Body coardinate systems are
automatically aligned at simulation start. Cannot be sensed or actuated. Must
only be used in closed loops.
r Connection parameters
Current hase: =not connected=
Current follower: =not connected=
r Parameters
Axes
Axis of action
Mame [y 2] Reference cays
Base [100] WORLD I~
Follower |[01 0] WORLD "
O Cancel | Help | Apply
The dialog box has two active areas, Connection parameters and
Parameters.
.
Connection Current base
Parameters

When you connect the base (B) connector port on the Disassembled

Cylindrical block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
“Disassembled Cylindrical base and follower Body connector ports” figure.

Current follower

When you connect the follower (F) connector port on the Disassembled
Cylindrical block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
“Disassembled Cylindrical base and follower Body connector ports” figure.
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Disassembled Cylindrical

Parameters

Base Body connector port \‘c

Disassembled Cylindrical base and follower Body connector ports

B

7

TI F OV\
Follower Body connector port

Disassembled Cylindrical

There is one Axes panel.

The entries on the Axes pane are required. They specify the directions of the
two misaligned axes of the translational-rotational DoF's that the

Disassembled Cylindrical represents.

- Parameters
Axes
Axis of action
Mame [y 2] Reference cays

Base  |[100] WORLD =

Follower |[01 0] WORLD =

0K Cancel Help Apply

Name

This column automatically displays the names of the two misaligned
rotation axes attached to base and follower bodies, respectively.

Axis of action [x y z]

Enter here as two three-component vectors the two misaligned directional
axes along and about which the base and follower bodies respectively can
translate and rotate. The default vectors are [1 0 0] and [0 1 0],
respectively. The axes are directed vectors whose overall signs matter.

Reference csys
Using the pull-down menu, choose the coordinate systems (World, the base

Body CS, or the follower Body CS) whose coordinate axes the two vector
axes of translation-rotation are oriented with respect to. The defaults are

WORLD.
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Disassembled Cylindrical

See Also Cylindrical, Disassembled Prismatic, Disassembled Revolute, Disassembled
Spherical

See “Modeling Joints” on page 4-17 for more on representing DoF's with
Disassembled Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting disassembled joints.
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Disassembled Prismatic

Purpose

Library

Description

I

Represent a disassembled prismatic joint with one translational degree of
freedom along misaligned axes

Joints/Disassembled Joints

The Disassembled Prismatic block represents a single translational degree of
freedom (DoF) along a pair of specified misaligned axes between two bodies.
SimMechanics automatically assembles (aligns) the translation axes at
simulation start.

This block is disassembled: you must connect each side of the Joint block to a
Body block at a Body coordinate system (CS) point, but the origins of these
Body CSs do not have to lie along a joint axis. As with the Prismatic Joint, these
Body CS origins do not need to be spatially collocated points either.

You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies. The disassembled joint axes are associated with the base and follower
Bodies, respectively.

You can only use a disassembled Joint block to close a loop. One loop must have
no more than one disassembled joint. You cannot connect an Actuator or Sensor
to a Disassembled Joint.

Disassembled prismatic axes of follower (blue) and base (red)

|
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Disassembled Prismatic

DialogBox and

Parameters <} Block Parameters : Disassembled - o] x|
rDescription
Creates two misaligned primitive prismatic axes, one attached to the hase (B}
and other attached to the fallower (F) Body. Axes and Body coaordinate systems
are automatically aligned at simulation start. Cannot be sensed or actuated.
Must only be used in closed loops.
r Connection parameters
Current hase: =not connected=
Current follower: =not connected=
r Parameters
Axes
Axis of translation
Mame [y 2] Reference cays
Base [100] WORLD I~
Follower |[01 0] WORLD "
0K Cancel | Help | Apply
The dialog box has two active areas, Connection parameters and
Parameters.
.
Connection Current base
Parameters

When you connect the base (B) connector port on the Disassembled

Prismatic block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
“Disassembled Prismatic base and follower Body connector ports” figure.

Current follower

When you connect the follower (F) connector port on the Disassembled
Prismatic block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
“Disassembled Prismatic base and follower Body connector ports” figure.
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Disassembled Prismatic

Base Body connector port \C

Disassembled Prismatic base and follower Body connector ports

Parameters

The entries on the Axes pane are required. They specify the directions of the
two misaligned axes of the translational DoF that the Disassembled Prismatic

B

i

IF:'.D

Disassembled Prismatic

There is one Axes panel.

Follower Body connector port

represents.
- Parameters
Axes |
Axis of translation
Mame [y 2] Reference cays
Base  |[100] WORLD =
Follower |[01 0] WORLD =
0K Cancel Help Apply
Name

This column automatically displays the names of the two misaligned
translation axes attached to base and follower bodies, respectively.

Axis of translation [x y z]

Enter here as two three-component vectors the two misaligned directional
axes along which the base and follower bodies respectively can translate.
The default vectors are [1 0 0] and [0 1 0], respectively. The axes are

directed vectors whose overall signs matter.

Reference csys

Using the pull-down menu, choose the coordinate systems (World, the base
Body CS, or the follower Body CS) whose coordinate axes the two vector
axes of translation are oriented with respect to. The defaults are WORLD.



Disassembled Prismatic

See Also Disassembled Cylindrical, Disassembled Revolute, Disassembled Spherical,
Prismatic

See “Modeling Joints” on page 4-17 for more on representing DoF's with
Disassembled Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closing loops with disassembled joints.
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Disassembled Revolute

|

Purpose Represent a disassembled revolute joint with one rotational degree of freedom
about misaligned axes

Library Joints/Disassembled Joints
Description The Disassembled Revolute block represents a single rotational degree of
freedom (DoF) along a pair of specified misaligned axes between two bodies.
i} IF SimMechanics automatically assembles (aligns) the rotation axes at
ﬂ simulation start.

This block is disassembled: you must connect each side of the Joint block to a
Body block at a Body coordinate system (CS) point, but the origins of these
Body CSs do not need to be spatially collocated points or lie along a joint axis.

You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies. The disassembled joint axes are associated with the base and follower
Bodies, respectively.

You can only use a disassembled Joint block to close a loop. One loop must have
no more than one disassembled joint. You cannot connect an Actuator or Sensor
to a Disassembled Joint.

Disassembled revolute axes of follower (blue) and base (red)
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Disassembled Revolute

DialogBox and
Parameters

Connection
Parameters

8-72

<} Block Parameters : Disassemble - o] x|

rDescription

Creates two misaligned primitive revolute axes, one attached to the base (B)
and other attached to the fallower (F) Body. Axes and Body coaordinate systems

are automatically aligned at simulation start. Cannot be sensed or actuated.
Must only be used in closed loops.

r Connection parameters
Current hase:
Current follower:

=not connected=
=not connected=

r Parameters
Axes
Axis of rotation
Mame [y 2] Reference cays
Base  |[100] WORLD "
Follower |[01 0] WORLD "
0K Cancel | Help | Apply

The dialog box has two active areas, Connection parameters and
Parameters.

Current base

When you connect the base (B) connector port on the Disassembled
Revolute block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
“Disassembled Revolute base and follower Body connector ports” figure

Current follower

When you connect the follower (F) connector port on the Disassembled
Revolute block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
“Disassembled Revolute base and follower Body connector ports” figure



Disassembled Revolute

Base Body connector port

\CH“FF%\

Dizassembled Rewolute

Follower Body connector port

Disassembled Revolute base and follower Body connector ports

Parameters There is one Axes panel.

The entries on the Axes pane are required. They specify the directions of the
two misaligned axes of the rotational DoF that the Disassembled Revolute

represents.
- Parameters
Axes |
Axis of rotation
Mame [y 2] Reference cays
Base  |[100] WORLD =
Follower |[01 0] WORLD =
QK Cancel Help Apply
Name

This column automatically displays the names of the two misaligned
rotation axes attached to base and follower bodies, respectively.

Axis of rotation [x y z]

Enter here as two three-component vectors the two misaligned directional
axes about which the base and follower bodies respectively can rotate. The
default vectorsare [1 0 0] and [0 1 0], respectively. The axes are directed
vectors whose overall signs matter.

Reference csys
Using the pull-down menu, choose the coordinate systems (World, the base
Body CS, or the follower Body CS) whose coordinate axes the two vector
axes of rotation are oriented with respect to. The defaults are WORLD.
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Disassembled Revolute

See Also Disassembled Cylindrical, Disassembled Prismatic, Disassembled Spherical,
Revolute

See “Modeling Joints” on page 4-17 for more on representing DoF's with
Disassembled Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closing loops with disassembled joints.
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Disassembled Spherical

Purpose

Library

Description

™

Represent a disassembled spherical joint with three rotational degrees of
freedom about dislocated pivots

Joints/Disassembled Joints

The Disassembled Spherical block represents three rotational degrees of
freedom (DoF) about a pair of specified dislocated pivots at the two bodies,
separated “ball-in-socket” joints. SimMechanics automatically assembles
(collocates) the spherical pivots at simulation start.

Two rotational DoF's specify a directional axis, and a third rotational DoF
specifies rotation about that directional axis. (See the motion figure in the
Spherical block reference page.) The sense of each rotational DoF is defined by
the right-hand rule. Unlike the Gimbal block, the Disassembled Spherical
block cannot become singular.

This block is disassembled: you must connect each side of the Joint block to a
Body block at a Body coordinate system (CS) point, but the origins of these
Body CSs (the dislocated pivots) do not need to be spatially collocated points.

You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies. The disassembled joint pivots are associated with the base and follower
Bodies, respectively.

You can only use a disassembled Joint block to close a loop. One loop must have
no more than one disassembled joint. You cannot connect an Actuator or Sensor
to a Disassembled Joint.

Disassembled spherical pivots of follower (blue) and base (red)

|
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Disassembled Spherical

DialogBox and
Parameters

Connection
Parameters
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<} Block Parameters : Disassembled - ol x|

rDescription

Creates two spatially dislocated ariging of the hase (B) and the follower (F) Body
coordinate systems as spherical pivots attached to each Body. The
originsipivats are autormatically collocated at simulation start. Cannot be sensed
or actuated. Must anly he used in closed loops.

r Connection parameters
Current hase:
Current follower:

=not connected=
=not connected=

r Parameters
Axes
Reference
Mame arientation [x v 2] Reference cays
Base [100 WORLD [
Fallower |[01 0] WORLD |-

O Cancel | Help |

Apply

The dialog box has one active area, Connection parameters. The other area,
Parameters, is inactive.

Current base

When you connect the base (B) connector port on the Disassembled
Spherical block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
“Disassembled Spherical base and follower Body connector ports” figure.

Current follower
When you connect the base (F) connector port on the Disassembled
Spherical block to a Body CS Port on a Body, this parameter is

automatically reset to the name of this Body CS. See the following
“Disassembled Spherical base and follower Body connector ports” figure.



Disassembled Spherical

Base Body connector port
\LC B @' F O\
i Follower Body connector port

Disassembled Spherical

Disassembled Spherical base and follower Body connector ports
Parameters There is one Axes panel.

The entries on the Axes pane are automatic. They specify the dislocated pivot
points of the spherical DoF that the Disassembled Spherical represents.

 Parameters
Axes |
Reference

Mame arientation [xy 2] Reference cays
Base  |[100] WORLD 157
Fallower |[01 0] WORLD 157
QK Cancel Help Apply

Name

This column automatically displays the names of the two dislocated pivot
points attached to base and follower bodies, respectively.

Reference orientation [x y z]
This field is not active.

Reference csys
This field is not active.

See Also Disassembled Cylindrical, Disassembled Prismatic, Disassembled Revolute,
Gimbal, Spherical

See “Modeling Joints” on page 4-17 for more on representing DoFs with
Disassembled Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closing loops with disassembled joints.
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Distance Driver

Purpose
Library

Description

i
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Specify the distance between two Body CS origins as a function of time
Constraints & Drivers

The Distance Driver block drives the distance between the origins of two Body
coordinate system (CS) as a function of time that you specify. This function
must always remain nonnegative during the simulation.

Let rq, ry be the vector positions of the origins of CS1 on one Body and CS2 on
the other Body, respectively. These vectors can be measured in any CS. The
Distance Driver specifies the scalar distance |r; - ro| between these points as
a function of time:

|7y 1o = fib).
You connect the Distance Driver to a Driver Actuator block.

The Simulink input signal into the Driver Actuator specifies the
time-dependent driving function f(¢) and its first two derivatives, as well as
their units. If you do not actuate Distance Driver, this block acts as a
time-independent constraint that freezes the distance between the two Body
CSs at its initial value during the simulation.

Drivers restrict relative degrees of freedom (DoF's) between a pair of bodies as
specified functions of time. Locally in a machine, they replace a Joint as the
expression of the DoF's. Globally, Driver blocks must occur topologically in
closed loops. Like Bodies connected to a Joint, the two Bodies connected to a
Drivers are ordered as base and follower, fixing the direction of relative motion.

You can also connect a Constraint & Driver Sensor to any Driver and measure
the reaction forces/torques between the driven bodies.



Distance Driver

DialogBox and
Parameters

Connection
Parameters

<} Block Parameters : Distance | - o] x|

rDescription

Drives the distance between origins ofthe hase (B) and follawer (F)
Body coordinate systems with a specified Driver Actuator signal.
Distance must remain non-negative at all times. Sensor and actuator
ports can be added.

r Connection parameters

Current hase: =not connected=
Current follower: =not connected=
Mumber of sensor f actuatar ports: IU 3:
Ok | Cancel | Help | Apply |

The dialog box has one active area, Connection parameters.

Current base
When you connect the base (B) connector port on the Distance Driver block
to a Body CS Port on a Body, this parameter is automatically reset to the
name of this Body CS. See the following “Distance Driver base and follower
Body connector ports” figure.

Current follower
When you connect the follower (F) connector port on the Distance Driver
block to a Body CS Port on a Body, this parameter is automatically reset to
the name of this Body CS. See the following “Distance Driver base and
follower Body connector ports” figure.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Driver Actuator and Constraint & Driver Sensor
blocks to this Driver. The default is 0.

To activate the Driver, connect a Driver Actuator.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of the
translation axis.
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Distance Driver

See Also

8-80

Base Body connector port \
(Ziz)
u[t]
D\Follower Body connector port

Distance Driver

Distance Driver base and follower Body connector ports

Constraint & Driver Sensor, Driver Actuator, Linear Driver, Weld

See “Modeling Constraints and Drivers” on page 4-34 for more on restricting
DoFs with Drivers.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on using drivers in closed loops.

See “Constraining and Driving Motion” on page 8-6.



Driver Actuator

Purpose Apply relative motion between a pair of constrained bodies through a driver
Library Sensors & Actuators
Description The Driver Actuator block actuates a Driver block connected between a pair of

bodies. You connect the block to the Driver block connected between the Bodies.
" The Driver block represents a time-dependent (rheonomic) constraint on a
HE] relative degree of freedom (DoF) between the two bodies. A Driver requires a
time-dependent function to specify the relative position, velocity, and
acceleration of the connected Bodies. The output of the Driver Actuator is this
time-dependent function f(¢) and its first two derivatives.

You specify these three functions as a bundled Simulink input signal. This
signal can be any Simulink signal, including a signal feedback from a Sensor
block, satisfying these conditions:
¢ The signal must consist of three bundled components.

= Exception: The Velocity Driver requires two bundled components.
e The three components must be ordered (f2), dfi¢)/d¢, d*ft)/dt>).

= Exception: The Velocity Driver requires a function and its derivative (f(¢),
dfit)/de).

¢ Each successive signal component must be the time derivative of the
previous component.

¢ The specific meaning of f(t) depends on the connected Driver block being
actuated. Select the specific Driver block for details.

Linear Motions Angular Motions

Distance Driver Angle Driver
Linear Driver

Velocity Driver

The Driver connects a base (B) and a follower (F) Body. The base—follower
sequence determines the sense of the actuation signal. The inport is the
Simulink input signal. The output is the connector port you connect to the
Driver block you want to actuate.

8-81



Driver Actuator

DialogBox and
Parameters

Actuation

8-82

Note You do not have to connect a Driver Actuator to a Driver block. If you do
not actuate a Driver, the Driver block acts as a time-independent constraint
that freezes the driven relative DoF between the Bodies at its initial value
during the simulation.

<} Block Parameters : Driy N =]

rDescription
Inputs position, velocity, and acceleration Simulink signals
to Driver to drive relative motion between Base (B) and
Follower (F) Bodies. Base-Follower direction determines
sense of Driver Actuator data. Input is muxed Simulink
sighal.

rActuation
Pasition fm d|
Velocity mis d|
Acceleration I""”S= d|

Ok | Cancel | Help | Apply |

The dialog box has one active area, Actuation.

Position

In the pull-down menu, choose the units of the actuating f(z) you apply to

the relative motion of the bodies.

If the Driver Actuator is connected to a Velocity Driver, this field does not

appear.

Velocity

In the pull-down menu, choose the units of the actuating df(t)/ d¢ you apply
to the relative motion of the bodies.

If the Driver Actuator is connected to a Velocity Driver, this field refers to

fio).



Driver Actuator

Acceleration

In the pull-down menu, choose the units of the actuating d2f( t)/ dt> you
apply to the relative motion of the bodies.

If the Driver Actuator is connected to a Velocity Driver, this field refers to

dftt)/ds.

Example Here is a Driver Actuator connected to a Distance Driver, which connects two
Bodies:

— @mcsd S C52 =

g cs1$ CEz m—

Bodyd

Distance Criver Badyz

\ Driver actuated

Simulink signal in
- g

Crriver Actuatar

You must add an Actuator port (connector port) to the Driver block to connect
the Driver Actuator to it. The base (B)-follower (F) Body sequence on the two
sides of the Driver determines the sense of the Driver Actuator data.

The Driver Actuator drives the relative motion between the two Bodies
connected to the Driver. The nature of the connected Driver block determines
the exact meaning of the actuation data, including the choice of units.

See Also Body Actuator, Constraint & Driver Sensor, Joint Actuator, Mechanical
Branching Bar

See “Constraining and Driving Motion” on page 8-6.

In Simulink, see the Signal Routing Library and the Sources Library.
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Gear Constraint

Purpose

Library

Description

©
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Constrain the rotational motion of two bodies to move along tangent pitch
circles

Constraints & Drivers

The two Bodies connected by a Gear Constraint block are each restricted to
turn relative to another along pitch circles centered at each body. The pitch
circle centers are the origins of the Body coordinate systems (CSs) at which the
Gear Constraint block is connected on either side. The pitch circles are tangent
at one contact point.

Let rq, ro be the radius vectors of the two pitch circles and w;, ®g the angular
velocity vectors of the two bodies. The Gear Constraint requires that:

m1Xr1=m2Xr2.
You specify the scalar radii r1, 9 of the pitch circles.

You must also connect the two Bodies connected by a Gear Constraint to a
third, carrier Body by Revolute or Cylindrical Joints. (The third carrier body
can be ground, but you must use two Ground blocks in this case, because a
Ground has only one Body CS port. Both Grounds represent the same immobile
body.) The constrained pair of Bodies rotate relative to one another about
distinct rotational axes defined by the angular velocity vectors oq, m9. These
axes do not have to be parallel.

Constraints restrict relative degrees of freedom (DoF's) between a pair of
bodies. Locally in a machine, they replace a Joint as the expression of the DoF's.
Globally, Constraint blocks must occur topologically in closed loops. Like
Bodies connected to a Joint, the two Bodies connected to a Constraint are
ordered as base and follower, fixing the direction of relative motion.

You can connect a Constraint & Driver Sensor to a Constraint block, but not a
Driver Actuator. The Constraint & Driver Sensor measures the reaction
forces/torques between the constrained bodies.



Gear Constraint

DialogBox and
Parameters

Connection
Parameters

<} Block Parameters : Gear C - o] x|

rDescription

Caonstrains the base (B) and fallower {F) Bodies to corotate as
meshed gears with pitch circles. The base and follower Bodies
must he attached to a third, carrier Body by Revalute ar Cylindrical
Joints. These joints define the gear rotational axes. Sensar ports
can be added. Base-follower sequence determines sign of
forward motion.

r Connection parameters

Current hase: =not connected=

Current follower: =not connected=

Mumber of sensor parts: 0 <
 Parameters

Fitch circle [ocated at base

Radius: |1
Units: Im LI
Pitch circle located at follower
Radius: |1
Units: Im LI
Ok | Cancel | Help | Apply |

The dialog box has two active areas, Connection parameters and
Parameters.

Current base
When you connect the base (B) connector port on the Gear Constraint block
to a Body CS Port on a Body, this parameter is automatically reset to the
name of this Body CS. See the following “Gear Constraint base and follower
Body connector ports” figure.

Current follower
When you connect the follower (F) connector port on the Gear Constraint
block to a Body CS Port on a Body, this parameter is automatically reset to
the name of this Body CS. See the following “Gear Constraint base and
follower Body connector ports” figure.

8-85



Gear Constraint

Number of sensor ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Constraint & Driver Sensor blocks to this
Constraint. The default is 0.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the follower rotating in the right-handed sense
about the rotation axis.

Base Body connector port \

Gear Constraint

Follower Body connector port

Gear Constraint base and follower Body connector ports

Parameters Pitch circle located at base

Enter Radius and Units for the pitch circle centered at base Body CS. The
defaults are 1 and m (meters).

Pitch circle located at follower

Enter Radius and Units for the pitch circle centered at follower Body CS.
The defaults are 1 and m (meters).
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Example A simple example of a valid part of a model with a Gear Constraint:

ost Mg csz[g—w %) cst My osz

Body1 Gear Constraint Body2

Revalute1 Rewolutez

%
0

’—- —&rFlud
csz

Body

—

The Body CS origins CS2@Body1 and CS1@Body2 must be separated and
oriented in such a way that the gear pitch circles are in contact and tangent at
one point.

See Also Body, Constraint & Driver Sensor, Cylindrical, Ground, Revolute

See “Modeling Constraints and Drivers” on page 4-34 for more on restricting
DoF's with Constraints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on using constraints in closed loops.

See “Constraining and Driving Motion” on page 8-6.
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Purpose
Library

Description

v
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Represent a composite joint with three rotational DoFs
Joints
The Gimbal block represents a composite joint with three rotational degrees of

freedom (DoF's) as three revolute primitives. There are no constraints among
the primitives.

Caution A joint with three revolute primitives becomes singular if two or
three of the rotation axes become parallel (“gimbal lock”). The simulation
stops with an error in this case.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Gimbal block is assembled: the origins of
these Body CSs must lie along the primitive axes, and the Body CS origins on
either side of the Joint must be spatially collocated points, to within assembly
tolerances.

You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies.



Gimbal

|

A Joint block represents only the abstract relative motion of two bodies, not the
bodies themselves. You must specify reference CSs to define the directions of
the joint axes.
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DialogBox and
Parameters <} Block Parameters : Gimbal - o] x|

rDescription

Represents three rotational degrees of freedom. The Follawer (F)
rotates with respect to the Base (B) Body around three primitive
revalute axes (R1, R2, R3). R1 attached to Base. R3 attached to
Follower. Listed order of primitives is order of motion during
simulation. Sensor and actuator ports can be added. Base-Fallower
seguence and axes directions determine sign of forward motion. This
joint becomes singular if twa revolutes align.

r Connection parameters
Current hase: =not connected=
Current follower: =not connected=
Murmber of sensor f actuator ports: lﬂ

 Parameters

Axes | Advanced |

Axis of rotation
Mame | Primitive [y 2] Reference cays

F1 | Rewolute |[100] WORLD hd
R2 | Rewolute |[010] WORLD hd
R3 | Rewolute |[001] WORLD hd

Ok | Cancel | Help | Apply |

The dialog box has two active areas, Connection parameters and
Parameters.

Connection Current base

Parameters When you connect the base (B) connector port on the Gimbal block to a
Body CS Port on a Body, this parameter is automatically reset to the name
of this Body CS. See the following “Gimbal base and follower Body
connector ports” figure.

The base Body is automatically connected to the first joint primitive R1 in
the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Gimbal block to a
Body CS Port on a Body, this parameter is automatically reset to the name
of this Body CS. See the following “Gimbal base and follower Body
connector ports” figure.
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Parameters

The follower Body is automatically connected to the last joint primitive R3
in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Joint Actuator and Joint Sensor blocks to this Joint.
The default is 0.

The motion of revolute primitives is specified in angular units.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the follower moving around the rotational axis
following the right-hand rule.

gy

zimbal

Base Body connector port

\Follower Body connector port

Gimbal base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in Gimbal has
an entry line. These lines specify the direction of the axes of action of the DoFs
that the Gimbal represents.

Name - Primitive
The primitive list states the names and types of joint primitives that make
up the Gimbal block: revolute primitives R1, R2, R3.
Axis of action [x y z]
Enter here as a three-component vector the directional axes defining the
allowed motions of these primitives and their corresponding DoFs:
= Revolute: axis of rotation

The default vectors are shown in the dialog box above. The axis is a directed
vector whose overall sign matters.

To prevent singularities and simulation errors, no two of the revolute axes
can be parallel.
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Reference csys

Using the pull-down menu, choose the coordinate system (World, the base
Body CS, or the follower Body CS) whose coordinate axes the vector axis of
action is oriented with respect to. This CS also determines the absolute
meaning of forces/torques and motion along/about the joint axis. The
default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics
interprets the topology of your schematic diagram.

~Parameters

A¥ES Advanced

[ Mark as the preferred cut joint

Cne joint in each closed loop topoloogy will he cut automatically.
Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting
during the simulation, select the check box. The default is unselected.

See Also Revolute, Spherical
See “Modeling Joints” on page 4-17 for more on representing DoF's with Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting.
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Ground

Purpose
Library

Description

—

DialogBox and
Parameters

Represent an immobile point at rest in World
Bodies

A Ground block represents an immobile ground point at rest in the absolute
inertial World reference frame (RF). Connecting it to a Joint prevents one side
of that Joint from moving.

Ground is a type of Body, but you can connect only one side of a Ground to a
Joint block. A Ground block automatically carries a Grounded coordinate
system (CS). This Grounded CS is inertial, at rest in the World reference frame,
with coordinate axes parallel to the World axes:

+x points right
+y points up (gravity in —y direction)
+z points out of the screen, in three dimensions

But a Ground’s origin is the ground point, which in general is shifted with
respect to the World origin.

Every valid SimMechanics model must have at least one Ground block.
Multiple Ground blocks represent different fixed points in the global inertial
World. In the topology of a machine model, multiple Ground blocks function as
a single body.

You cannot connect a Sensor or Actuator to a Ground block, because the ground
point cannot be moved.

<) Block Parameters : Grour _ ol x|

rDescription
Grounds one side of a Joint to a fixed location in the World
coordinate system.

r Grounded point

Location [xv 2] {relative to the YWoarld coordinate systerm)

jmon [rm |

oK | Cancel Help | Apply |
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See Also

8-94

Grounded point
Enter in this field the position of the ground point translated from the
origin of the World CS. The position is specified as a translation vector
(x,y,2z), with components projected on to the fixed World CS axes. Set the
Ground position units using the pull-down menu to the right. The defaults
are [0 0 0] and m (ineters).

Body

See “Creating Body CS Ports” on page 4-16 and “Modeling Joints” on
page 4-17for more on setting up Grounds.



In-Plane

Purpose
Library

Description

Fi If; &

Represent a composite joint with two translational DoF's
Joints
The In-Plane block represents a composite joint with two translational degrees

of freedom (DoF's) as two prismatic primitives. There are no constraints among
the primitives.

Caution A joint with two prismatic primitives becomes singular if the two
translation axes become parallel. The simulation stops with an error in this
case.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The In-Plane block is assembled: the origins of
these Body CSs must lie along the primitive axes, within assembly tolerances.
But the Body CS origins on either side of the Joint do not have to be spatially
collocated points.

You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies.
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A Joint block represents only the abstract relative motion of two bodies, not the
bodies themselves. You must specify reference CSs to define the directions of
the joint axes.
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In-Plane

DialogBox and

Parameters

Connection
Parameters

<} Block Parameters : In-plane

=10 x|

rDescription

Represents two translational degrees of freedom. Restricts the
Follower {F) to move relative to the Base (B Body in plane defined hy
span of twa primitive prismatic axes (P1, P2). P1 attached to Base. P2
attached to Follower. Listed order of primitives is arder of motion
during simulation. Sensar and actuator ports can be added.
Basze-Faollower sequence and axes directions determine sign of
forward mation. This joint hecames singular if bath prismatics align.

r Connection parameters

Current hase: =not connected=

Current follower: =not connected=

Murmber of sensor f actuator ports: ID 3:

 Parameters

Axes | Advanced |

Axis of translation
Mame | Primitive [y 2] Reference cays
P1 | Prismatic|[1 00] WORLD =)
P2 | Prismatic|[01 0] WORLD =)
Ok | Cancel | Help | Apply |

Current base

The dialog box has two active areas, Connection parameters and
Parameters.

When you connect the base (B) connector port on the In-Plane block to a
Body CS Port on a Body, this parameter is automatically reset to the name
of this Body CS. See the following “In-Plane base and follower Body

connector ports” figure.

The base Body is automatically connected to the first joint primitive P1 in

the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the In-Plane block to
a Body CS Port on a Body, this parameter is automatically reset to the
name of this Body CS. See the following “In-Plane base and follower Body

connector ports” figure.
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Parameters
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The follower Body is automatically connected to the last joint primitive P2
in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Joint Actuator and Joint Sensor blocks to this Joint.
The default is 0.

The motion of prismatic primitives is specified in linear units.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of the
translation axis.

Base Body connector port \
4 '-\:I:

In-plane

Gv\ Follower Body connector port

In-Plane base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in In-Plane has
an entry line. These lines specify the direction of the axes of action of the DoF's
that the In-Plane represents.

Name - Primitive
The primitive list states the names and types of joint primitives that make
up the In-Plane block: prismatic primitives P1, P2.

Axis of action [x y z]
Enter here as a three-component vector the directional axes defining the
allowed motions of these primitives and their corresponding DoF's:
= Prismatic: axis of translation
The default vectors are shown in the dialog box above. The axis is a directed

vector whose overall sign matters.

To prevent singularities and simulation errors, the two prismatic axes
cannot be parallel.



In-Plane

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base
Body CS, or the follower Body CS) whose coordinate axes the vector axis of
action is oriented with respect to. This CS also determines the absolute
meaning of forces/torques and motion along/about the joint axis. The
default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics
interprets the topology of your schematic diagram.

~Parameters

A¥ES Advanced

[ Mark as the preferred cut joint

Cne joint in each closed loop topoloogy will he cut automatically.
Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting
during the simulation, select the check box. The default is unselected.

See Also Planar, Prismatic
See “Modeling Joints” on page 4-17 for more on representing DoF's with Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting.
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Purpose
Library

Description

K%

8-100

Apply force/torque or motion to a joint primitive
Sensors & Actuators

A joint between two bodies represents relative degrees of freedom (DoF's)
between the bodies. The Joint Actuator block actuates a Joint block connected
between two Bodies with one of these signals:

e A generalized force:
= Force for translational motion along a prismatic joint primitive
= Torque for rotational motion about a revolute joint primitive

* A motion:

= Translational motion for a prismatic joint primitive, in terms of linear
position, velocity, and acceleration. The velocity signal must be the
derivative of the position signal, and the acceleration the derivative of the
velocity.

= Rotational motion for a revolute joint primitive, in terms of angular
position, velocity, and acceleration. The angular velocity signal must be
the derivative of the angle signal, and the angular acceleration the
derivative of the angular velocity.

The generalized force or the motion is a function of time specified by a Simulink
input signal. This signal can be any Simulink signal, including a signal
feedback from a Sensor block.

The Joint Actuator applies the actuation signal along/about the joint axis in the
reference coordinate system (CS) specified for that joint primitive in the Joint’s
dialog box. The Joint connects a base and a follower Body. The base—follower
sequence determines the sense of the actuation signal.

The inport is the Simulink input signal. The output is the connector port you
connect to the Joint block you want to actuate. A Joint Actuator block actuates
one joint primitive at a time:

® A primitive Joint (Prismatic or Revolute) has only one primitive within the
Joint to actuate.

® A composite Joint has multiple joint primitives within, and you must choose
which of those primitives to actuate with the Joint Actuator.



Joint Actuator

|

You cannot connect a Joint Actuator to a Spherical or spherical primitive.

DialogBox and
Parameters <} Block Parameters : Join ' - o] x|

rDescription

Actuates a Jaint primitive with generalized forceftorgue or
linearfangular pasition, velocity, and acceleration motion
sighals. Base-follower sequence and joint axis determines
sign of forward motion. Inputs are Simulink signals. Motion
input signals must be bundled into one signal. Connect to
Joint block to see Connected to primitive list.

rActuation

Connected to primitive F1 -

& Generalized forces

Applytargue (revolute onlyy [l -
Apply farce {prismatic onky IN vI
 daotion

Apply rotational motian (revolute onlyy

Anole deg -

Angularvelocity Idegis vI
Angular acceleration Il:IegIS= vI

Apply translational motion (prismatic onlyy

Fosition Im vI

Welocity s -
Acceleration Imxfs= vI
Ok | Cancel | Help | Apply |

The dialog box has one active area, Actuation.

Actuation Connected to primitive

In the pull-down menu, choose the joint primitive within the Joint that you
want to actuate with the Joint Actuator. A primitive Joint block has only
one joint primitive.

You cannot connect a Joint Actuator to a spherical primitive.

Ifthe Joint Actuator is not connected to a Joint block, this menu shows only
Unknown.
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Generalized
Forces

Motion

8-102

Using the radio buttons, you can toggle between the two types of actuation,
Generalized forces and Motion.

This option interprets the actuation signal as a force or a torque between the
Bodies connected by the Joint block you are actuating.

& Generalized farces

Apply farce (prizmatic onld IN vI

Apply targue (revolute only [-1m -

Apply torque (revolute only)

In the pull-down menu, choose units for the actuation torque. The default
is N-m (Newton-meters). This choice is valid only if you connect this
Actuator block to a revolute primitive.

The Simulink input is a 1-component signal.

Apply force (prismatic only)

In the pull-down menu, choose units for the actuation force. The default is
N (Newtons). This choice is valid only if you connect this Actuator block to
a prismatic primitive.

The Simulink input is a 1-component signal.

This option interprets the actuation signal as a motion of the joint primitive to
which you connect the Joint Actuator.



Joint Actuator

& Mation

Apply translational motion (prismatic anky)
Position m
Yelocity mis -
Acceleration mis® -
Apply rotational motion {revolute only)

Angle deg -

Angular velocity Idegfs vI
Angular acceleration Idegfs’ vI

Apply translational motion (prismatic only)
In the pull-down menus, choose units for the linear actuation Position,
Velocity, and Acceleration. The defaults are m (meters), m/s
(meters/second), and m/s? (meters/second?), respectively.

The Simulink input is a bundled 3-component signal with components in
the order shown in the dialog box.

Apply rotational motion (revolute only)
In the pull-down menus, choose units for the angular actuation Angle,
Angular Velocity, and Angular Acceleration. The defaults are deg
(degrees), deg/s (degrees/second), and deg/ s2 (degrees/secondz),
respectively.

The Simulink input is a bundled 3-component signal with components in
the order shown in the dialog box.
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Example Here is a Joint Actuator connected to a Prismatic that connects two Bodies:

—ms G CEE [m

g cs1$ Coe m—

Bodyd

Body2

Prizmatic \

Simulink signal in

Joint actuated
Joint Actuator

You must add an Actuator port (connector port) to the Joint block to connect
the Joint Actuator to it. The base (B)-follower (F) Body sequence on the two
sides of the Joint determines the sense of the Joint Actuator data.

See Also Joint Initial Condition Actuator, Joint Sensor, Joint Stiction Actuator,
Mechanical Branching Bar, Prismatic, Revolute

See “Creating Joints” on page 8-4.

In Simulink, see the Signal Routing Library and the Sources Library.
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Joint Initial Condition Actuator

Purpose

Library

Description

IC

Apply initial positions and velocities to the primitives of a Joint before starting
simulation

Sensors & Actuators

The Joint Initial Condition Actuator block supplies the prismatic and revolute
joint primitives of a Joint block with initial value data. The initial values are
the positions and velocities of the joint primitives and fully specify the initial
state of motion (initial kinematic state) of those primitives.

When you build your machine, the geometric configuration implicitly specifies
the initial positions/angles of bodies relative to one another and to World. The
Ground, Body, and Joint layout only specifies initial coordinates (degrees of
freedom), not their corresponding velocities, however. Starting a simulation in
this state implicitly sets all initial velocities to zero. You can set the full initial
kinematic state, both positions and velocities, of joint primitives by using Joint
Initial Condition Actuator blocks.

You can set initial positions and velocities for two primitive types:

¢ Translational initial conditions for a prismatic primitive, in terms of linear
position and velocity

® Rotational initial conditions for a revolute primitive, in terms of angular
position and velocity

This block can actuate one, some, or all of the prismatic and revolute primitives
of a Joint.

The Joint Initial Condition Actuator applies the initial state along/about the
joint axis in the reference coordinate system (CS) specified for that joint
primitive in the Joint’s dialog box. The Joint connects a base and a follower

Body. The base-follower sequence determines the sense of the actuation signal.

The output is the connector port you connect to the Joint block whose initial
conditions you want to set. You set the initial linear and/or angular positions
and velocities in the block’s dialog box, so there is no input signal.

You cannot actuate a Spherical or spherical primitive with a Joint Initial
Condition Actuator.
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DialogBox and
Parameters

Actuation

8-106

<} Block Parameters : Joint Initial Cond - o] x|
rDescription |
Sets initial linearfangular position and velacity of all the primitives in a joint. Connectto a
jointto see a list of its primitives.
rActuation
Enahle Primitive Position Units Velocity Units
r P1 0 m bl |[1 ms ¥
r Pz |0 m bl |[1 ms ¥
r Pz |0 m bl |[1 ms ¥
r = ] rad o radis =
r Rz ] rad o radis =
r R3 ] rad o radis =
ok | Cancel | Help Apply

The dialog box has one active area, Actuation.

The menu choices are available for every primitive in the Joint to which the
Joint Initial Condition Actuator is connected. If you connect the Actuator with
its dialog open, the primitive list is automatically updated to reflect the
connected Joint’s primitives.

Enable

Select this check box if you want to actuate the primitive with initial
conditions. The default is unselected.

Primitive
Displays the name of the primitive within the Joint. Not an active field.
Position

Enter a value for the initial position of the primitive, either prismatic or
revolute. The default is 0.

Units

In the pull-down menu, select units for the initial position. The defaults are
m (meters) for prismatic primitives and rad (radians) for revolute
primitives.



Joint Initial Condition Actuator

|

Velocity

Enter a value for the initial velocity of the primitive, either prismatic or
revolute. The default is 0.

Units

In the pull-down menu, select units for the initial velocity. The defaults are

m/s (meters/second) for prismatic primitives and rad/s (radians/second) for
revolute primitives.

You cannot connect a Joint Initial Condition Actuator to a spherical primitive.
If the connected Joint has a spherical primitive, the entry for that primitive is

grayed out:
<} Block Parameters : Joint Initial Condit - o] x|
rDescription
Sets initial linearfangular position and velacity of all the primitives in a joint. Connectto a
jointto see a list of its primitives.
rActuation
Enable Frimitive Fosition Units Velocity Units
r P1 0 m bl |[1 ms ¥
r Pz |0 m bl |[1 ms ¥
r =L m bl |[1 ms ¥
N g nia Tllnta krnis &
Grayed-out spherical
rimitive entr
QK | Cancel | Help | Apply | p y

Example Here is a Joint Initial Condition Actuator connected to a Custom Joint, which

connects two Bodies:

“

Custom Joint Bodyz

Joint actuated with
Joint Initial Condition initial conditions
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See Also

8-108

You must add an Actuator port (connector port) to the Joint block to connect
the Joint Initial Condition Actuator to it. The base (B)-follower (F)) Body
sequence on the two sides of the Joint determines the sense of the Joint Initial
Condition Actuator data.

Joint Actuator, Joint Sensor, Joint Stiction Actuator, Mechanical Branching
Bar, Prismatic, Revolute

See “Using JICA Blocks” on page 4-50for setting general initial conditions
(positions and velocities) of DoF's in a machine.

See “Creating Joints” on page 8-4.
In Simulink, see the Signal Routing Library and the Sources Library.



Joint Sensor

Purpose
Library

Description

&7

Measure the motion and force/torque of a joint primitive
Sensors & Actuators

The Joint Sensor block measures the position, velocity, and/or acceleration of a
joint primitive in a Joint block.

The Joint Sensor measures the motion along/about the joint axis (or about the
pivot point for a spherical primitive) in the reference coordinate system (CS)
specified for that joint primitive in the Joint’s dialog box. The Joint connects a
base and a follower Body. The base—follower sequence determines the sense of
the motion.

Depending on the joint primitive being sensed, you measure one of these
motion types:

¢ Translational motion for a prismatic joint primitive, in terms of linear
position, velocity, and/or acceleration

® Rotational motion for a revolute joint primitive, in terms of angular position,
velocity, and/or acceleration

¢ Spherical motion for a spherical joint primitive, in terms of a quaternion,
quaternion derivative, and/or quaternion second derivative

The input is the connector port connected to the Joint being sensed. The

outport is a set of Simulink signals or one bundled Simulink signal of the

position, velocity, and/or acceleration of the joint primitive.

A Joint Sensor block measures one joint primitive at a time:

® A primitive Joint (Prismatic or Revolute) has only one primitive within the
Joint to sense.

® A composite Joint has multiple joint primitives within, and you must choose
which primitive to sense with the Joint Sensor.

A body’s orientation rotation matrix R relates vector components measured in
the body CS and in the inertial World CS by [R] - V4 = V. The column vector v
lists the vector V’s three components measured in the body CS. The column
vector Vg lists the vector V’s three components measured in the World CS.
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Dialog Box and
Parameters <} Block Parameters : Joint - ol x|

rDescription
Measures linearfangular position, velocity, acceleration,
computed farceftorque andfor reaction forceftorgue of a Jaint
primitive. Spherical measured by quaternion. Base-follower
sequence and joint axis determine sign of forward motion.
Cutputs are Simulink signals. Multiple output signals can be
pundled inta one signal. Connect ta Jaint block to see
Connected to primitive list

rMeasurements

Cannected to primitive Unknown VI

¥ Angle deg -

™ Angular velocity lﬁ
™ angular acceleration lm
[~ computed torque lm
W Pasition m
i mis -

I acceleration lm
[~ Computed force m

V quaternion
™ Quaternion, detivative
™ Quaterninn, secand derivative

™ Reaction torgue M- -

™ Reaction forca M VI

Reactions measured an: IElase VI
With respectio coordinate systerm: IAbSUIuIe orld) VI

vV Cutput selected parameters as one signal

Ok | Cancel | Help | Apply |

The dialog box has one active area, Measurements.

Measurements Connected to primitive

In the pull-down menu, choose the joint primitive within the Joint that you
want to measure with the Joint Sensor. A primitive Joint block has only
one joint primitive.
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If the Joint Sensor is not connected to a Joint block, this menu shows only
Unknown.

The Measurements pane you see in the Joint Sensor dialog depends on the
type of joint primitive to which you connect the Joint Sensor.

Prismatic joint primitive (P)
Select the check box(es) for each of the possible measurements you want to
make: Position, Velocity, Acceleration, Computed Force, Reaction
Torque, and Reaction Force.

The computed force is that force along the prismatic axis which reproduces
the follower motion with respect to base.

The reaction force and/or torque is (are) 3-component vector(s) of the force

and/or torque that the joint primitive transfers to the base or follower Body.

In the pull-down menus, choose the units for each of the measurements you
want. The defaults are m (meters), m/s (meters/second), m/s2
(meters/second?), N (Newtons), and N-m (Newton-meters), respectively, for
Position, Velocity, Acceleration, Force, and Torque.

~ Measurements
Connected to primitive P1 -
IV Position m
™ Velocity mig -
[T Acceleration mis? v
[” Computed Force m
[ Reaction Torgue Im
" Reaction Force m
Reactions measured on: Im
‘With respect to coordinate system: IW
¥ Output selected parameters as one signal

Ok Cancel | Help | Apply |

8-111



Joint Sensor

The bundled Simulink output signal for a prismatic primitive has these
measurements ordered in a row vector. Unselected components are removed
from the vector signal:

Position Velocity Acceleration Computed Reaction Torque  Reaction Force
Force (3-vector) (3-vector)

Revolute joint primitive (R)
Select the check box(es) for each of the possible measurements you want to
make: Angle, Angular velocity, Angular acceleration, Computed
Torque, Reaction Torque, and Reaction Force.

The computed torque is that torque about the revolute axis which
reproduces the follower motion with respect to base.

The reaction force and/or torque is (are) 3-component vector(s) of the force
and/or torque that the joint primitive transfers to the base or follower Body.

In the pull-down menus, choose the units for each of the measurements you
want. The defaults are m (meters), m/s (meters/second), m/s2
(meters/second?), N (Newtons), and N-m (Newton-meters), respectively, for
Position, Velocity, Acceleration, Force, and Torque.

8-112



Joint Sensor

~ Measurements

Connected to primitive R1 -

v Angle deq -

™ Angular velacity m
™ Angular acceleration Im
[T Computed Targue Im
[ Reaction Torgue Im
" Reaction Force m
Reactions measured on: Im
‘With respect to coordinate system: IW

¥ Output selected parameters as one signal

Ok Cancel | Help | Apply |

Note The absolute angle of revolute motion is mapped on to the interval
(-180°, +180°] degrees or (—m,+n] radians.

The bundled Simulink output signal for a revolute primitive has these
measurements ordered in a row vector. Unselected components are removed
from the vector signal:

Angle Angular Angular Computed  ReactionForce  Reaction Torque
Velocity Acceleration Torque (3-vector) (3-vector)

Spherical joint primitive (S)
Select the check box(es) for each of the possible measurements you want to
make: Quaternion, Quaternion, derivative, and Quaternion, second
derivative, Reaction Torque, and Reaction Force.
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The reaction force and/or torque is (are) 3-component vector(s) of the force
and/or torque that the joint primitive transfers to the base or follower Body.

The quaternion is dimensionless. The time unit for the derivatives is
seconds. Each quaternion measurement is a 4-component row vector.

~ Measurements

Connected to primitive IS vI

IV Quaternion
™ Quaternion, derivative

™ Quaternion, second derivative

[ Reaction Torgue Im
" Reaction Force m
Reactions measured on: Im
‘With respect to coordinate system: IW

¥ Output selected parameters as one signal

Ok | Cancel | Help | Apply |

The bundled Simulink output signal for a spherical primitive has these
quaternion measurements ordered into a larger row vector. Unselected
components are removed from the vector signal:

Quaternion Quaternion, Quaternion, Reaction Torque  Reaction Force
(4-vector) derivative second derivative (3-vector) (3-vector)
(4-vector) (4-vector)

Reactions measured on
Choose the Body on which the reaction force and/or torque vector(s) is (are)
measured, Base or Follower. The default is Base.

With respect to coordinate system
In the pull-down menu, choose the coordinate system in which the reaction
torque and/or force vector(s) is (are) measured: either the Local (Body CS)
to which the Sensor is connected or the default Absolute (World).
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Example

See Also

In the Absolute case, the force and torque vectors have components
measured relative to the inertial World CS axes. In the Local case, the
same force and torque signals are premultiplied by the inverse orientation
rotation matrix R'! = RT for the Body selected in Reactions measured on.

Output selected parameters as one signal
Select this check box to convert all the output signals into a single bundled
signal. The default is selected. If you unselect it, the Joint Sensor block will
grow as many Simulink outports as there are active signals selected, in the
same order top to bottom, in the dialog box.

If the check box is selected, the Simulink signal out has all the active
signals ordered into a single row vector. The order and type of the signal
components depend on the joint primitive, as listed in the Simulink signal
tables above.

Here is a Joint Sensor connected to a Prismatic that connects two Bodies:

— s $ C5z |-
I oy (=g ﬁ CszEg—
Body1

Prism atic Body?

_ .
Joint measured
Joint Sensor %/

- Simulink signal out

You must add an Sensor port (connector port) to the Joint block to connect the
Joint Sensor to it. The base (B)-follower (F) Body sequence on the two sides of
the Joint determines the sense of the Joint Sensor data.

Body Sensor, Constraint & Driver Sensor, Joint Actuator, Joint Initial

Condition Actuator, Joint Stiction Actuator, Mechanical Branching Bar,
Prismatic, Revolute, Spherical
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See “Representing Body Positions and Orientations” on page 3-2 and
“Modeling Sensors” on page 4-60.

In Simulink, see the Signal Routing Library and the Sinks Library.
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Joint Spring & Damper

Purpose

Library

Description

-

Models a damped linear oscillator force or torque on a prismatic or revolute
joint between two bodies

Force Elements

The Joint Spring & Damper block models a damped linear oscillator force
acting along a prismatic primitive or a damped linear oscillator torque acting
about a revolute primitive. The joint primitives are connected between two
bodies, and the force or torque acts between these bodies. The sign of the force
or torque is set by the base (B)-to-follower (F) sequence of the bodies. These
models represent a damped linear translational and/or torsional spring in the
prismatic and revolute cases, respectively.

You connect this block to a Joint at one of the Joint’s sensor/actuator ports. (If
the Joint lacks a sensor/actuator port, open its dialog and create one.) The Joint
represents any mixture of translational and rotational degrees of freedom
(DoFs). With the Joint Spring & Damper block, you can then apply any
combination of damped linear oscillator forces on any prismatics and damped
linear torsion torques on any revolutes.

Joint Spring and Damper Theory

Connect two Bodies with a Joint having some combination of prismatic and
revolute primitives.

If x represents the displacement along a prismatic axis, and v = dx/dt is the
prismatic DoF’s linear speed, then the damped spring force acting along this
prismatic and between the Bodies connected by this Joint is

F =—-k(x —xy) - bv

The model parameters are the spring constant %, the natural spring length
(offset) xy, and the damping constant b. The natural length is the spring’s
length with no forces acting on it and should be nonnegative: x; > 0. A stable
spring requires £ > 0. A damping representing dissipation and respecting the
second law of thermodynamics requires & > 0. You can use a negative b to
represent energy pumping.

If 6 represents the displacement about a revolute axis, and o = d6/dt is the
revolute DoF’s angular speed, then the damped torsion torque acting about this
revolute and between the Bodies connected by this Joint is
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DialogBox and
Parameters

Actuation
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N = k(0 - 0) - bo>

The model parameters are the torsion constant k£, the natural torsion angle
(offset) 0y, and the damping constant b. The natural angle is the torsion
balance’s direction with no torques acting on it and can have any sign. A stable
torsion requires £ > 0. A damping representing dissipation and respecting the
second law of thermodynamics requires & > 0. You can use a negative b to
represent energy pumping.

<} Block Parameters: Joint Spring & Damper - o] x|
rJoint Spring & Damper
Models a damped linear ascillatar in a Joint connecting twa Bodies, equivalent to a translational spring and damper on
prismatic primitives and a torsional spring and damper on revalute primitives. The force or targue F hetween the hodies
is a function of the relative linear or angular displacement ¥ and the linear ar angular velacity v of the bodies, given by F
=-k*(-x0) - b*v. The parameters x0, k, and b represent the spring offset, spring constant, and damper constant,
respectively.
rActuation
Spring Damper Spring Farcel
Constant Constant Offzet Fosition Velocity Torgue
Enahle Frimitive k h x0 Units Units Units
r P1 0 0 0 m - ||mis - |ln -
r Pz |0 0 0 m Tijms x| b
r P3 0 0 0 m - |mis - |ln -
| R1 0 0 ] rad w |lradis = ||MN-m  *
r Rz ] ] ] rad ¥ ||radis  wIN-m w
r R3 ] ] ] rad ¥ ||radis  wIN-m w
QK Cancel Help Apply

The dialog box has one active area, Actuation.

The menu lists all the active primitives in the Joint to which the Joint Spring
& Damper block is connected. If you connect the Joint Spring & Damper with
its dialog open, the primitive list is automatically updated to reflect the
connected Joint’s primitives.
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Enable
To enable force or torque actuation on any particular primitive in the Joint,
select the Enable check box next to that primitive’s name in the Primitive
column. You cannot actuate spherical primitives.

Primitive
Lists the active primitives in the Joint to which the block is connected. P
represents a prismatic primitive, R a revolute primitive, and S a spherical
primitive.

Spring Constant k

Enter the spring or torsion constant &, for a prismatic or revolute primitive,
respectively. The default is 0.

The units for £ are derived implicitly from your choice of position and
force/torque units.
Damper Constant b

Enter the spring or torsion damping constant b, for a prismatic or revolute
primitive, respectively. The default is 0.

The units for b are derived implicitly from your choice of velocity and
force/torque units.
Spring Offset x0
Enter the natural spring length x( or the natural torsion angle 6, for a
prismatic or revolute primitive, respectively. The default is 0.
Position Units
In the pull-down menu, select linear or angular units for prismatic or
revolute primitives, respectively. The default is m (meters) or rad (radians).
Velocity Units

In the pull-down menu, select linear or angular velocity units for prismatic
or revolute primitives, respectively. The default is m/s (meters/second) or
rad/s (radians/second).

Force/Torque Units

In the pull-down menu, select force or torque units for prismatic or revolute
primitives, respectively. The default is N (Newtons) or N-m
(Newton-meters).
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See Also Body, Body Spring & Damper, Custom Joint, Joint Actuator, Joint Sensor,
Prismatic, Revolute

See “Modeling Force Elements” on page 4-55.
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Joint Stiction Actuator

Purpose
Library

Description

Estemal Actuation
Kinetic Friction
Foward Stiction Limit
Static Friction
Fewerse Stiction Limit

Apply classical friction to a joint primitive
Sensors & Actuators

The Joint Stiction Actuator block applies stiction (classical friction) to a
prismatic or revolute joint primitive. The stiction is regulated by an idealized
model whose parameters you specify. (See “Stiction Theory” following.) The
Joint Stiction Actuator applies stiction to the joint primitive as a relative
force/torque between the joint’s connected Bodies. The bodies can experience
additional forces independent of the joint.

The inports are Simulink signals. The output is a connector port. You cannot
connect a Joint Stiction Actuator to a Spherical block or spherical primitive.
Restrictions on simultaneous actuators and sensors:

® You cannot actuate a joint primitive simultaneously with a Joint Stiction
Actuator and a Joint Actuator. But with the Joint Stiction Actuator inport
External Actuation, you can apply to the joint primitive an external
(nonfrictional) force/torque actuation signal equivalent to applying a Joint
Actuator.

® You can simultaneously actuate a joint primitive with a Joint Stiction
Actuator and a Joint Initial Condition Actuator.

® You can also simultaneously actuate a joint primitive with a Joint Stiction
Actuator and measure the force/torque along/around the joint primitive with
a Joint Sensor.
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Dialog Box and
Parameters
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<) Block Parameters : Joint Stiction A - ol x|

rDescription

Actuates a Jaint primitive with stiction forceftorgue. Locked if static friction
remains within range of forward and reverse stiction limits. External actuation
and kinetic friction require units. Locking velocity threshold in MKS (Sl) units.
Basze-follower sequence and joint axis determine sign of forward moation. Inputs
are Simulink signals. Connectta Joint block to see Connected to primitive list.

- Stiction actuation

Connected to primitive IF'1 LI
External force units IN LI
Kinetic friction units IN LI
Locking velocity threshald (MKS-SI units)|1 e-2

Ok | Cancel | Help | Apply |

The dialog box has one active area, Stiction actuation.

Connected to primitive

In the pull-down menu, choose the joint primitive within the Joint which
you want to actuate with the Joint Stiction Actuator. A primitive Joint
block has only one joint primitive.

You cannot connect a Joint Stiction Actuator to a spherical primitive.

If the Joint Stiction Actuator is not connected to a Joint block, this menu
shows only Unknown.
External force units

In the pull-down menu, choose units for the external nonfrictional
force/torque Fgoyy. The default is N (Newtons) if connected to a prismatic
primitive and N-m (Newton-meters) if connected to a revolute primitive.

Kinetic friction units

In the pull-down menu, choose units for the kinetic friction force/torque Fk.
The default is N (Newtons) if connected to a prismatic primitive and N-m
(Newton-meters) if connected to a revolute primitive.

Locking velocity threshold (MKS-SI units)

Enter the positive relative velocity of the joint primitive below which the
joint locks by static friction. Above that velocity, the joint is unlocked. The



Joint Stiction Actuator

units must be MKS: for a prismatic primitive, meters/second; for a revolute
primitive, radians/second.

Summary of Joint Stiction Actuator inport signals
All the Simulink inports are 1-component signals. Here is an example of a

prismatic joint connected between two bodies and actuated with stiction:

Body1

Bodyz

Prism atic

sz dy csi g
most My sz ———

Joint Stiction Actuator
External Actuation

Kinetic Friction

L——a Foward Stiction Limit
Static Friction

‘\\aernul actuation

Kinefic friction

Reverse Stiction Limit

R

\ Static friction lower limit
S

Static friction upper limit tatic friction

Joint Stiction Actuator Simulink Inport Signals

Summary of Joint Stiction Actuator Input Signals

Simulink inport Friction Model Symbol Description

External Fext External nonfrictional
actuation force/torque

Kinetic Friction Fg Kinetic friction

Forward Stiction FSf <0 Static friction lower limit

Limit
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Example

Stiction Theory
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Summary of Joint Stiction Actuator Input Signals (Continued)

Simulink inport Friction Model Symbol Description
Static Friction Fiest Static test friction
Reverse Stiction Fg'>0 Static friction upper
Limit limit

Units

You specify units in the dialog box only for the external nonfrictional and
kinetic friction forces/torques, Foyt and Fi. These two friction signals are used
to integrate the physical motion of the joint and have physical significance in
the model context. So units are necessary for Fgy; and Fi.

The other three signals are compared only to one another in the locking
condition Fgf < Fi,q; < Fg'. These friction signals are not used to integrate
motion and thus do not have units set in the dialog box. But they must have the
same implicit units for comparison.

Caution The threshold velocity vy}, must be set greater than the Absolute
tolerance in the Simulation Parameters dialog box to avoid a meaningless
threshold value.

Never set Absolute tolerance to auto if stiction actuators are present in a
model. A recommended setting is to make vy, at least 10 times the Simulation
Parameters absolute tolerance.

See “Choosing Simulation Options” on page 5-2for a discussion of setting
simulation parameters.

The mech_dpen_sticky model in the Demos library has two revolute joints
actuated with stiction. See “Joint Stiction Actuator Example: Mixed Static and
Kinetic Friction” on page 4-48.

Kinematics

v and a are the velocity and acceleration along/around a joint primitive axis.
These quantities are relative between the two bodies at the joint ends and
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signed + to indicate forward or reverse. The joint directionality is set by the
base (B)-follower (F)) Body sequence of Bodies attached to the joint primitive
being actuated.

Continuous Motion
A joint subject to stiction, if unlocked, moves in continuous motion. During this
motion, you can apply two forces/torques at the joint primitive:

* a kinetic friction force/torque F'ik:
= Fk <0 retards forward motion
= Fig > 0 retards reverse motion

* an external, non-frictional force/torque Fgy¢

Discrete Modes: Locked, Wait, Unlocked

Besides its continuous motion state, a joint actuated by stiction has multiple
discrete modes. The Joint Stiction Actuator switches a joint primitive between
locked and unlocked modes via event detection. In one mode, the joint locks
rigidly; in the other, it moves with the kinetic friction and external,
nonfrictional forces/torques Fg and Fqyt applied.

You specify the switching event by a two-condition threshold, constructed from
four user-specified inputs. (See the following “Discrete Joint Stiction Modes
and Transition Thresholds” figure).

¢ Joint unlocking threshold velocity vy, > 0 via the block dialog box.

¢ Static friction limits st< 0 and Fg" > 0 for forward and reverse motion, and
a static test friction Fiqgt, all three specified via Simulink signals. The static
test friction Fiog and forward/reverse limits Fgf and Fg" can be functions of
machine state and/or time.

The static test and kinetic frictions Fy,; and Fg and the threshold velocity vy,
can be discontinuous, but should be physically sensible.

Locked Mode

In this mode, v and a of the joint are zero. The static computed force/torque Fg
at the joint is internally computed to maintain this mode: Foy + Fg + Fp - Fp
= 0. The forces/torques F'g, F'p are the forces/torques on the base and follower
Bodies apart from those forces/torques acting at the joint.
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The mode remains locked as long as Fg' < Fyoq < Fg.

In most realistic friction models, you would set Fiot equal to the computed Fg.

Wait Mode

If the static test friction Fyoq( leaves the static friction range [Fgf, F], the joint
has passed the first threshold condition for unlocking, and the simulation
enters Wait Mode.

A search begins for a mode of this joint consistent with the modes of all other

joints. During the search, the net force/torque at the joint primitive F = Fgy4 +
Fgis computed, where Fk is the kinetic friction. In forward (reverse) motion, if
a <0 (a > 0), the search returns to the Locked Mode. Once consistent modes for
all joints are found, the simulation restarts and integrates a to obtain v. When
lv] exceeds vy, the second threshold condition, the joint unlocks.

This mode prevents infinite cycling between Locked and Unlocked Modes,
although it can noticeably slow down the simulation. The mode search uses an
algebraic loop, which displays warnings at the MATLAB command line.

Unlocked Mode

In the Unlocked Mode, the joint primitive moves, actuated by the sum of the
external, non-frictional force/torque Foyt and the kinetic friction F. The joint
returns to the Locked Mode if Simulink detects v crossing zero.
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Locked
v=20

Frest {st <0 Feat > ' >0

Wait
Reverse

Wait
Forward
v>0

Zero
Crossing

UnIdEEEE]

v=0
Apply K

V> +lgh

Discrete Joint Stiction Modes and Transition Thresholds

See Also Joint Actuator, Joint Initial Condition Actuator, Joint Sensor, Mechanical
Branching Bar, Prismatic, Revolute

See “Creating Joints” on page 8-4.

In Simulink, see the Signal Routing Library and the Sources Library, and Zero
Crossing Detection.
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Purpose

Library

Description

()
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Specify a component of the vector difference of two Body CS origins as a
function of time

Constraints & Drivers

The Linear Driver block specifies a component of the vector difference of Body
coordinate system (CS) origins as a function of time.

Let rq, ry be the vector positions of the origins of CS1 on one Body, CS2 on the
other Body, and R = r; — ry. The Linear Driver block specifies one of the vector
components of R = (X,Y,Z), projected on to the World CS axes, as a function of
time:

X, Y, or Z =fv).
You connect a Driver Actuator block to the Linear Driver.

The Simulink input signal into the Driver Actuator specifies the
time-dependent driving function f(¢) and its first two derivatives, as well as
their units. If you do not actuate Linear Driver, this block acts as a
time-independent constraint that freezes the vector component between the
two Body CS origins at its initial value during the simulation.

Drivers restrict relative degrees of freedom (DoF's) between a pair of bodies as
specified functions of time. Locally in a machine, they replace a Joint as the
expression of the DoF's. Globally, Driver blocks must occur topologically in
closed loops. Like Bodies connected to a Joint, the two Bodies connected to a
Drivers are ordered as base and follower, fixing the direction of relative motion.

You can also connect a Constraint & Driver Sensor to any Driver and measure
the reaction forces/torques between the driven bodies.
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DialogBox and
Parameters

Connection
Parameters

<} Block Parameters : Linear Diri

=10 x|

rDescription

Drives one component (£, Y, ar Z] of the relative vector between the
origing of the base (B) and follower {F) Body coordinate systems with
a Driver Actuator signal. Yector component measured with respectto
the World coordinate system. Follower is the head and hase is the tail
of relative vectar. Sensor and actuator ports can he added.
Basze-follower sequence determines sign of farward maotion, including
relative vector component signs.

r Connection parameters
Current hase: =not connected=
Current follower: =not connected=

Murmber of sensor f actuator ports: ID 3:

 Parameters

World axis: I}{

|

Ok | Cancel | Help | Apply

The dialog box has two active areas, Connection parameters and

Parameters.

Current base

When you connect the base (B) connector port on the Linear Driver block to
a Body CS Port on a Body, this parameter is automatically reset to the
name of this Body CS. See the following “Linear Driver base and follower

Body connector ports” figure.

Current follower

When you connect the follower (F) connector port on the Linear Driver
block to a Body CS Port on a Body, this parameter is automatically reset to
the name of this Body CS. See the following “Linear Driver base and

follower Body connector ports” figure.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports

needed for connecting Driver Actuator
blocks to this Driver. The default is 0.

and Constraint & Driver Sensor

To activate the Driver, connect a Driver Actuator.
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Parameters

See Also
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The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of the
translation axis.

Base Body connector port \ @@
%\Follower Body connector port

Linear Driver

Linear Driver base and follower Body connector ports

World axis

In the pull-down menu, choose the component of the vector difference R
between the Body CS origins that you want to drive as a function of time.
The components are measured with respect to the World CS axes. The
choices are X, Y, or Z. The default is X.

Constraint & Driver Sensor, Distance Driver, Driver Actuator

See “Modeling Constraints and Drivers” on page 4-34 for more on restricting
DoF's with Drivers.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on using drivers in closed loops.

See “Constraining and Driving Motion” on page 8-6.
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Purpose

Library

Description

Map multiple sensor/actuator lines to one sensor/actuator port on a Joint,
Constraint, or Driver, or to one Body coordinate system port on a Body

Utilities

The Mechanical Branching Bar bundles multiple actuator and sensor
connection lines into one line, allowing you to connect multiple actuators
and/or sensors to a single connector port on a Joint, Constraint, or Driver, or to
a single Body coordinate system (CS) port on a Body. You can choose any
number of sensor/actuator ports on the Mechanical Branching Bar.

¢ In the case of a Body, a single Body CS port represents a single Body CS. If
the needed Body CS port does not exist, open the Body dialog and create one.
You can connect the selected Body CS to multiple Body Actuators and
Sensors through the Mechanical Branching Bar.

¢ In the case of a Joint, you need a single sensor/actuator port on the Joint. If
the needed port does not exist, open the Joint’s dialog and create one. You
can connect this sensor/actuator port to multiple Actuators and Sensors
through the Mechanical Branching Bar.

Using the Mechanical Branching Bar, you can connect a Joint block to any
combination of Joint Sensors, Joint Actuators, Joint Initial Condition
Actuators, and Joint Stiction Actuators. The Actuator and Sensor dialogs
display the Joint’s primitives as if they were directly connected to the Joint.

® The procedure for Constraints and Drivers is the same as it is for Joints,
except that you need to choose to measure reaction forces/torques or to
actuate motions.

Cascading Mechanical Branching Bars and Avoiding Closed Loops

You can connect multiple Mechanical Branching Bar blocks in series, creating
a cascade. Connect the mechanical side of the first Branching Bar to a Joint,
Constraint, Driver, or Body. Then connect its sensor/actuator side to the
mechanical side of the second Branching Bar, and so on.

The only restriction on cascading Mechanical Branching Bars is that you must
avoid connecting them into closed loops.

The following diagram shows a cascade, starting at a Body.
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Mechanical side of Bars Sensor/actuator lines

e

Mlechanical
Sensor/actuator side of Bars

Branching
Barz

Mechanical
Branching
Bari

Caution To avoid simulation errors, you should not create a cascade of
Mechanical Branching Bars that closes on itself in a loop.

You should not connect the mechanical side of one Mechanical Branching Bar
to the mechanical side of another Mechanical Branching Bar. You should also
not connect the sensor/actuator side of one Mechanical Branching Bar to the
sensor/actuator side of another Mechanical Branching Bar.

Dialog Box and
Parameters <) Block Parameters: Mechanical Br - o x|

rMechanical Branching Bar
Maps multiple sensoractuator lines to one sensorfactuatar port. On a
Body, connects many sensorfactuator lines to one Body coordinate system.
On aJoint, Constraint, or Driver, connects many sensorfactuator lines to
onhe sensorfactuator port. Allows choice of primitives on Jaoints, reactions
forcesftargues on Constraints and Drivers, and mation actuation on Drivers.

r Connection parameters

MNumber of branches: 2 =

Ok | Cancel | Help | Apply |

The dialog box has one active area, Connection parameters.

8-132



Mechanical Branching Bar

Connection Number of sensor/actuator ports

Parameters Using this spinner menu, you can set the number of extra connector ports
needed for connecting Actuator and Sensor blocks to the Mechanical
Branching Bar. The default is 2.

Example Without the Mechanical Branching Bar, you must connect multiple Sensors
and Actuators to a Joint by creating a sensor/actuator port on the Joint for each

Sensor and each Actuator:

Joint

Bty ? Ground]

# 7
P = # o
M Joint 5
) Custom Joint et sensar
Sine Wave Joint Actuatar f

&7
E % ) \& Joint Sensort

Sine Wiave1 Joint Actuatord %/‘

Joint Sensor2

o

Joint Sensor3

Multiple sensor/actuator ports

With the Mechanical Branching Bar block, you can combine all the sensor and
actuator ports for a single Joint into one sensor/actuator port:
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Body2

Fog¥ 1|B—

Ground]

Customn Joght

&7

Joint Sensor

&7

int Sensort

Bar
—fo
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int Sensor2
6

SineWavel it actuatort —Q;)/'

Joint Sensor3

One sensor/
actuator port Mechanical

Branching

[
=

[
=

Mechanical Branching Bar

See Also Body, Body Actuator, Body Sensor, Constraint & Driver Sensor, Driver
Actuator, Joint Actuator, Joint Initial Condition Actuator, Joint Sensor, Joint

Stiction Actuator
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Purpose
Library

Description

Constrain the body axis vectors of two bodies to be parallel
Constraints & Drivers

The two Bodies connected by a Parallel Constraint are restricted in their
relative rotational motion. The Parallel Constraint is connected on either side
to a Body CS, one on each Body. A vector ag defined in one Body CS on the base
body remains parallel to a second vector ap defined in another Body CS on the
follower body.

The Parallel Constraint block requires that:

| ag*ap |/( |ag| |ap|)=1.
You specify the initial direction to which both vectors must remain parallel.
Constraints restrict relative degrees of freedom (DoF's) between a pair of
bodies. Locally in a machine, they replace a Joint as the expression of the DoFs.
Globally, Constraint blocks must occur topologically in closed loops. Like

Bodies connected to a Joint, the two Bodies connected to a Constraint are
ordered as base and follower, fixing the direction of relative motion.

Parallel Constraint is assembled: the Body CS origin on the base body must be
initially collocated with the Body CS origin on the follower body, to within
assembly tolerance.

You can connect a Constraint & Driver Sensor to any Constraint block, but not
a Driver Actuator. The Constraint & Driver Sensor measures the reaction
forces/torques between the constrained bodies.
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Dialog Box and
Parameters <} Block Parameters : Paral - o] x|

rDescription

Constrains one Body axis vector defined on bath hase (B)
and follower (F) Bodies to remain parallel. Parallel
canstraint axis defines initial direction of hoth Body axis
vectars in hase and follower Body coordinate systems.
Sensor ports can be added. Base-follower sequence
determines sign of forward mation.

r Connection parameters

Current hase: =not connected=
Current follower: =not connected=
Mumber of sensor parts: 0 <
 Parameters
Farallel canstraint axis [xy 2] Reference cays
oo [WORLD 4|
(0]34 | Cancel | Help | Apply |

The dialog box has two active areas, Connection parameters and

Parameters.
Connection Current base
Parameters When you connect the base (B) connector port on the Parallel Constraint

block to a Body CS Port on a Body, this parameter is automatically reset to
the name of this Body CS. See the following “Parallel Constraint base and
follower Body connector ports” figure.

Current follower
When you connect the follower (F) connector port on the Parallel
Constraint block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following “Parallel
Constraint base and follower Body connector ports” figure.

Number of sensor ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Constraint & Driver Sensor blocks to this
Constraint. The default is 0.
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Parameters

See Also

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the follower rotating in the right-handed sense
about the rotation axis.

Base Body connector port

\Follower Body connector port

Farallel Constraint

Parallel Constraint base and follower Body connector ports

Parallel constraint axis [x y z]

Enter the axis vector defining the initial direction of the two body axis
vectors ay, ar. These body axis vectors are restricted to always remain
parallel to this initial axis. The defaultis [1 0 0].

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base
Body CS, or the follower Body CS) whose coordinate axes the initial
Parallel constraint axis is oriented with respect to. This CS also
determines the absolute meaning of reaction forces/torques at this
Constraint. The default is WORLD.

Angle Driver, Constraint & Driver Sensor, Velocity Driver

See “Modeling Constraints and Drivers” on page 4-34 for more on restricting
DoF's with Constraints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on using constraints in closed loops.

See “Constraining and Driving Motion” on page 8-6.
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Purpose

Library

Description

+
fa
:E ¥
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Represent a composite joint with two translational DoFs and one rotational
DoF, with the rotational axis orthogonal to the plane of the translational axes

Joints

The Planar block represents a composite joint with two translational degrees
of freedom (DoF's) as two prismatic primitives and one rotational DoF's as one
revolute primitives. The rotation axis must be orthogonal to the plane defined
by the two translation axes.

Caution A joint with two prismatic primitives becomes singular if the two
translation axes become parallel. The simulation stops with an error in this
case.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Planar block is assembled: the origins of
these Body CSs must lie along the primitive axes, and the Body CS origins on
either side of the Joint must be spatially collocated points, to within assembly
tolerances.

You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies.



Planar

A Joint block represents only the abstract relative motion of two bodies, not the
bodies themselves. You must specify reference CSs to define the directions of
the joint axes.
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DialogBox and
Parameters <} Block Parameters : Planar - o] x|

rDescription

Represents twa translational and one rotational degrees of freedom.
Restricts the Follower (F) to move relative to the Base (B) Body in
plane defined by span of two primitive prismatic axes (P1, P2).
Follower can also rotate about axis R1 = P1 % P2. Axis R1 must he
narmal to plane. P1 attached to Base. R1 attached to Fallower. Listed
arder of primitives is order of motion during simulation. Sensar and
actuator ports can he added. Base-Follower sequence and axes
directions determine sign of forward mation. This joint becomes
singular if hoth prismatics align.

r Connection parameters
Current hase: =not connected=
Current follower: =not connected=
Murmber of sensor f actuator ports: lﬂ

 Parameters

Axes | Advanced |

Axis of action
Marme | Primitive [y 2] Reference csys
F1 | Prismatic|[1 00] WORLD hd
F2 | Prismatic|[01 0] WORLD hd
F1 | Rewolute |[001] WORLD hd
QK | Cancel | Help | Apply |

The dialog box has two active areas, Connection parameters and

Parameters.
Connection Current base
Parameters When you connect the base (B) connector port on the Planar block to a Body

CS Port on a Body, this parameter is automatically reset to the name of this
Body CS. See the following “Planar base and follower Body connector ports”
figure.

The base Body is automatically connected to the first joint primitive P1 in
the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Planar block to a
Body CS Port on a Body, this parameter is automatically reset to the name
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Parameters

of this Body CS. See the following “Planar base and follower Body
connector ports” figure.

The follower Body is automatically connected to the last joint primitive R1
in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Joint Actuator and Joint Sensor blocks to this Joint.
The default is 0.

The motions of prismatic and revolute primitives are specified in linear and
angular units, respectively.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of the
translation axis. Positive rotation is the follower moving around the rotational
axis following the right-hand rule.

Base Body connector port \C

Flanar

o‘\Follower Body connector port

Planar base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in Planar has
an entry line. These lines specify the direction of the axes of action of the DoFs
that the Planar represents.
Name - Primitive
The primitive list states the names and types of joint primitives that make
up the Planar block: prismatic primitives P1, P2 and revolute primitives R1.
Axis of action [x y z]
Enter here as a three-component vector the directional axes defining the
allowed motions of these primitives and their corresponding DoF's:

= Prismatic: axis of translation
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= Revolute: axis of rotation

The default vectors are shown in the dialog box above. The axis is a directed
vector whose overall sign matters.

To prevent singularities and simulation errors, the two prismatic axes
cannot be parallel.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base
Body CS, or the follower Body CS) whose coordinate axes the vector axis of
action is oriented with respect to. This CS also determines the absolute
meaning of forces/torques and motion along/about the joint axis. The
default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics
interprets the topology of your schematic diagram.

~Parameters

A¥ES Advanced

[ Mark as the preferred cut joint

Cne joint in each closed loop topoloogy will he cut automatically.
Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting
during the simulation, select the check box. The default is unselected.

See Also In-Plane, Prismatic, Revolute
See “Modeling Joints” on page 4-17 for more on representing DoF's with Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting.
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Point-Curve Constraint

Purpose
Library

Description

el

Constrain the motion of a point on one body to be along a curve on another body
Constraints & Drivers

The two Bodies connected by a Point-Curve Constraint can only move relative
to one another if a point on one body moves along a curve on the other body.
The point on one body is the origin of the Body coordinate systems (CS) to
which one side of the Point-Curve Constraint is connected. The corresponding
curve starting point on the other body is the origin of the Body CS to which the
other side of the Point-Curve Constraint is connected.

Specifying the Curve You specify the curve function on the second body as
a spline with break points and end conditions. The spline is a piecewise cubic
polynomial, with the pieces joined at user-specified breakpoints:

(x1,51,21) » (X2,Y2,29) , ... , (XNYN-2N)

and boundary conditions applied at the spline’s endpoints, (xy,y0,2¢) and
(xN+1YN+1-2N+2)- The spline curve and its first two derivatives are continuous
at each breakpoint.

Constraints restrict relative degrees of freedom (DoF's) between a pair of
bodies. Locally in a machine, they replace a Joint as the expression of the DoF's.
Globally, Constraint blocks must occur topologically in closed loops. Like
Bodies connected to a Joint, the two Bodies connected to a Constraint are
ordered as base and follower, fixing the direction of relative motion.

For the Point-Curve Constraint, the base is the Body carrying the Point, and
the follower is the Body carrying the Curve. The Point-Curve Constraint is
assembled: the Body CS origin on the base (Point) body must initially be
collocated with the Body CS origin on the follower (Curve) body, to within
assembly tolerance.

You can connect a Constraint & Driver Sensor to any Constraint block, but not
a Driver Actuator. The Constraint & Driver Sensor measures the reaction
forces/torques between the constrained bodies.
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Dialog Box and
Parameters

Connection
Parameters

8-144

<) Block Parameters : Poini =] 73

rDescription

Constrains the Body coordinate systemn origin an Body (B)
to move along a curve defined in the Body coordinate
systern on Body (F). The curve is defined as a spline with
breakpoints. Sensor ports can be added. Base-follower
seguence determines sign of forward motion.

r Connection parameters

Foint location: =not connected=
Curve location: =not connected=
Mumber of sensor parts: 0 <

rSpline specification

Break points

% |l =]
v | =]
z i =
Units: m
End conditions: lm
™ Allow the point to fall offthe curve

Edit spline |

Ok | Cancel | Help | Apply

The dialog box has two active areas, Connection parameters and Spline
specification. It stores the defining information of a single spline for the

constraint.

Current base

When you connect the base (B) connector port on the Point-Curve
Constraint block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
“Point-Curve Constraint base and follower Body connector ports” figure.

This Body CS origin is the point of the Point-Curve Constraint.

Current follower

When you connect the follower (F) connector port on the Point-Curve
Constraint block to a Body CS Port on a Body, this parameter is
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Specifying the
Spline

automatically reset to the name of this Body CS. See the following
“Point-Curve Constraint base and follower Body connector ports” figure.

This Body CS origin is the starting point of the curve of the Point-Curve
Constraint.

Number of sensor ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Constraint & Driver Sensor blocks to this
Constraint. The default is 0.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of the
translation axis.

Base (Point) Body connector port \C

FointCunre Constraint

Follower (Curve) Body connector port

Point-Curve Constraint base and follower Body connector ports

The Point-Curve Constraint dialog box gives you two ways to specify the spline
curve. The first way is entering in this dialog box the coordinates of
breakpoints and endpoints on the follower and is valid for defining curves in up
to three dimensions.

The second way is graphically displaying and editing the spline in the Edit
spline editor (see following), valid only for two-dimensional curves on the
follower.

Break points

List here the x-components, the y-components, and the z-components,
respectively, of the breakpoints and endpoints that define the spline:

X: enter (xg, x7, ..., Xy,.7) as a vector.
Y: enter (yg, ¥, --., YN+1) @s a vector.

Z: enter (2, 27, ..., ZN47) as a vector.
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All three fields require nonnull entries. The number of components in each
vector should be the same. Exception and shortcut: if all the Z components
are the same, just enter one number in the Z vector. The Break points list
replicates this number to expand out a full vector.

If there are no X and/or Y components, you must still enter [0 0] in
that/those field(s). If there are no Z components, you must still enter at
least [0] in the Z field (using the replication/expansion shortcut).

The pull-down menu for each spatial dimension lists the history of those
previous breakpoints created by the graphical spline editor (see following)
within a single dialog box session. Closing the dialog box destroys this
history, and only the current breakpoint list is retained.

Units
In the pull-down menu, choose the linear units for distances on the
constrained bodies. The default is m (meters).

End conditions

In the pull-down menu, choose the type of end (boundary) condition on the
spline curve. The possible conditions are:

End Condition Definition Minimum Number
of Points
natural Match each endslope to the slope Two points

of the cubic that fits the first four
points at that end

not-a-knot Only the curve and its first Four points
derivative are continuous at first
and last interior points

periodic Match the first and second Two points, three
derivatives of the two endpoints recommended

The default is natural. The periodic end condition closes the spline.

Allow the point to fall off the curve

If the check box is selected, the base point continues with unconstrained
motion if it reaches an endpoint and leaves the spline on the follower. The
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direction of motion at the instant the base point leaves the constraint is
tangent to the spline.

If the check box is unselected, and the base point attempts to leave the
spline on the follower, the simulation stops with an error. The default is
unselected.

Edit spline
Click here to open the optional Edit spline dialog box.

The Edit spline dialog box provides alternative numerical entry and
graphical editing methods for defining the constraint spline. But it can
define only two-dimensional curves in the x-y coordinate directions on the
follower Body. The Edit spline editor ignores any z-components in existing
breakpoints.
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Edit Spline The numerical entry area lies on the left side of the Edit spline dialog box, the
graphical editing area on the right side.

Graphical toolbar Graphical breakpoint
and curve display

<) Point-Curve Conctraint: Edit spline oy sl 3
PRSIl e = T Y W
— Bieskpeirts [wyf @ —0—— Mawve, append, nosit, o delsle Bpeakpoints in the figuie 1o modify the spline
] ] -
06 T T CCTOR TE
0.4 e ;
L et
Breakpoint list = 02 F il o i
E 0}- 7 - -----3-
. 2 = ;
Breukpomi | S
numerical entry F i ;
04} Fgenanade
05 x" wgzewes) 1
. ot
08} : ; b Ty
4
DB 0.4 0.2 0 0.2 0.4
| A-position (m)
: Delete Al
Deet P | End candbions: [nefural =] Cusarlocaion: « 04701, v 10168
ok | caneal Apply

Breakpoint list
controls

Point-Curve Constraint Spline Editor

Graphical Editing of Spline Points

1 To place a breakpoint in the graphical display, place your cursor at the
position where you want the breakpoint. The Cursor location display in the
lower right indicates your current cursor coordinates in the display.
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2 Then click at the desired point. A circle appears where you clicked, and
simultaneously, the breakpoint is listed in the Breakpoints (x-y) list.

Continuing to add breakpoints generates the spline (red curve).

3 Use the Graphical toolbar controls to edit the spline graphically in the
display:
Append breakpoints Insert breakpoints

Move breakpoints Delete breakpoints

<} Point-Curye Constraint: Edit spline

Zoomlnw |/i¢ DEJE s

Zoom Out Auto Fit Grid On/0ff  Axes properties

= Remove points by clicking on the Delete breakpoints icon. Your cursor
turns into an eraser symbol. With it, select and click the breakpoints you
want to delete.

= Insert new (interior) breakpoints by clicking on the Insert breakpoints
icon. Your cursor acquires a small circle. Click on the positions, near the
existing curve, where you want the new breakpoints. The editor modifies
the spline to fit the new breakpoints.

= Add new endpoints and extend the curve by clicking on the Append
breakpoints icon. Your cursor acquires a small circle. Click on the
positions, near the existing endpoints, to where you want to extend the
curve. The editor modifies the spline to fit the new endpoints.

= Move existing endpoints by clicking on the Move breakpoints icon. Click
and drag the breakpoints you want to move, then drop them where you
want them.

The editor modifies both the spline red curve in the graphical display and the
Breakpoints (x-y) list as you make these changes.

Additional graphical toolbar controls:

= Zoom In/Zoom Out and Auto Fit: Standard Handle Graphics zooming
and auto resizing of graphics display.

= Grid On/Off: Turn the graphical display x-y grid on or off.
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= Axes properties: Edit properties of graphical display.

Numerical Editing of Spline Points

Use the numerical entry controls, instead of the graphical editing tools, to edit
breakpoints by text entry.

Breakpoints (x-y)
You can also add, delete, and edit the breakpoints via this Breakpoints list:

Select an existing breakpoint by highlighting it with your cursor.

Add a breakpoint by moving the highlighted selection to the empty line
below the last breakpoint with your cursor control.

In x: and y: enter the x- and y-coordinates of the currently selected
breakpoint.

Update breakpoint

After editing an existing breakpoint or entering a new one, update the
breakpoint list by clicking here. The new or changed breakpoint appears in
the graphical display as a circle.

Delete point
Click here to delete the currently selected breakpoint.

Delete all
Click here to delete all the breakpoints in the Breakpoint list.

End conditions

In the pull-down menu, choose the type of end (boundary) condition on the
spline curve. The possible conditions are natural, not-a-knot, and
periodic. The default is natural.

Closing the Edit spline Dialog Box

Clicking on Apply or OK updates the breakpoints stored in the main
Point-Curve Constraint dialog box.

Previous breakpoint lists are stored in the history pull-down menus of the main
Point-Curve Constraint dialog box’s Break points list. This history is
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destroyed if you close the main dialog box, and only the current Breakpoint list
is retained.
See Also Constraint & Driver Sensor

See “Modeling Constraints and Drivers” on page 4-34 for more on restricting
DoFs with Constraints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on using constraints in closed loops.

See “Constraining and Driving Motion” on page 8-6.

For more about representing curves as splines, see the Spline Toolbox User’s
Guide tutorial.

8-151



Prismatic

Purpose Represent a prismatic joint with one translational degree of freedom
Library Joints
Descripl'ion The Prismatic block represents a single translational degree of freedom (DoF)
along a specified axis between two bodies. A prismatic joint is one of
I SimMechanics primitive joints, along with revolute and spherical.
The Prismatic block is assembled: you must connect each side of the Joint block

to a Body block at a Body coordinate system (CS) point, and the origins of these
Body CSs must lie along the prismatic axis, to within assembly tolerances.
These Body CS origins do not need to be collocated in space.

You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the
bodies themselves. You must specify a reference CS to define the direction of
the joint axis.

Prismatic motion of follower (blue) relative to base (red)
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DialogBox and
Parameters

Connection
Parameters

<} Block Parameters : Prismati - o] x|

rDescription

Represents one translational degree of freedam. The Fallower (F)
hody translates relative to the Base (B) Body along single translational
axis connecting Body coardinate origins. Sensar and actuator ports
can be added. Base-Faollower seguence and axis direction determine
sign of forward motion.

r Connection parameters
Current hase: =not connected=
Current follower: =not connected=
Murmber of sensor f actuator ports: lﬂ

 Parameters

Axes | Advanced |

Axis of translation
Mame | Primitive [y 2] Reference cays

P1 | Prismatic|[001] WORLD LI

Ok | Cancel | Help | Apply I

The dialog box has two active areas, Connection parameters and

Parameters.

Current base

When you connect the base (B) connector port on the Prismatic block to a
Body CS Port on a Body, this parameter is automatically reset to the name
of this Body CS. See the following “Prismatic base and follower Body

connector ports” figure.

Current follower

When you connect the follower (F) connector port on the Prismatic block to
a Body CS Port on a Body, this parameter is automatically reset to the
name of this Body CS. See the following “Prismatic base and follower Body

connector ports” figure.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Joint Actuator and Joint Sensor blocks to this Joint.

The default is 0.
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The motion of a Prismatic is specified in linear units.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of the
translation axis.

Base Body connector port

a

Follower Body connector port

Prismatic

Prismatic base and follower Body connector ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. They specify the direction of the
translational DoF that the Prismatic represents.

- Parameters
Axes | Advanced |
Axis of translation
Mame | Primitive [y 2] Reference cays
P1 | Prismatic|[00 1] WORLD |
QK Cancel Help | Apply |
Name

This column automatically displays the name of each primitive joint
contained in the Joint block. For Prismatic, there is only one primitive
joint, a prismatic, labeled P1.

Primitive
This column automatically displays the type of each primitive joint
contained in the Joint block. For Prismatic, there is only one primitive type,
labeled Prismatic.
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See Also

Axis of translation [x y z]

Enter here as a three-component vector the directional axis along which
this translational DoF can move. The default vectoris [0 0 1]. The axis is
a directed vector whose overall sign matters.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base
Body CS, or the follower Body CS) whose coordinate axes the vector axis of
translation is oriented with respect to. This CS also determines the
absolute meaning of force and motion along the joint axis. The default is
WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics
interprets the topology of your schematic diagram.

~Parameters

Axps Advanced

[ Mark as the preferred cut joint

Cne joint in each closed loop topology will be cut automatically.
Check hox to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting

during the simulation, select the check box. The default is unselected.
Disassembled Prismatic, Joint Actuator, Joint Initial Condition Actuator,
Joint Sensor, Joint Stiction Actuator, Revolute, Spherical

See “Modeling Joints” on page 4-17 for more on representing DoF's with Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting.
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Purpose
Library

Description

f
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Represent an assembled revolute joint with one rotational degree of freedom
Joints

The Revolute block represents a single rotational degree of freedom (DoF)
about a specified axis between two bodies. The rotational sense is defined by
the right-hand rule. A revolute joint is one of SimMechanics primitive joints,
along with prismatic and spherical.

The Revolute block is assembled: you must connect each side of the Joint block
to a Body block at a Body coordinate system (CS) point, and the origins of these
Body CSs must be spatially collocated points, to within assembly tolerances.

You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the
bodies themselves. You must specify a reference CS to define the direction of
the joint axis.

Revolute motion of follower (blue) relative to base (red)
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DialogBox and

Parameters

Connection
Parameters

<} Block Parameters : Reyolut

=10 x|

rDescription

Represents one rotational degree of freedom. The fallower {F) Body
rotates relative to the hase (B) Body about a single rotational axis
going through collocated Body coordinate system arigins. Sensor and
actuator ports can he added. Base-follower sequence and axis
direction determine sign of farward motion by the right-hand rule.

r Connection parameters
Current hase: =not connected=
Current follower: =not connected=

Murmber of sensor f actuator ports: ID 3:

 Parameters

Axes | Advanced |

Axis of rotation
Mame | Primitive [y 2]

R1 Revalute ([001]

Reference cays
WORLD L'

Ok | Cancel | Help | Apply

The dialog box has two active areas, Connection parameters and

Parameters.

Current base

When you connect the base (B) connector port on the Revolute block to a
Body CS Port on a Body, this parameter is automatically reset to the name
of this Body CS. See the following “Revolute base and follower Body

connector ports” figure.

Current follower

When you connect the follower (F) connector port on the Revolute block to
a Body CS Port on a Body, this parameter is automatically reset to the
name of this Body CS. See the following “Revolute base and follower Body

connector ports” figure.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Joint Actuator and Joint Sensor blocks to this Joint.

The default is 0.
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The motion of a Revolute is specified in angular units.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the follower rotating in the right-handed sense
about the rotation axis.

Base Body connector port \C

o ¢ -

Frevolute Follower Body connector port

Revolute base and follower Body connector ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. They specify the direction of the
rotation axis of the DoF that the Revolute represents.

- Parameters
Axes | Advanced |
Axis of rotation
Mame | Primitive [y 2] Reference cays
R1 | Revolute |[001] WORLD |
oK Cancel Help | Apply |
Name

This column automatically displays the name of each primitive joint
contained in the Joint block. For Revolute, there is only one primitive joint,
a revolute, labeled R1.

Primitive
This column automatically displays the type of each primitive joint
contained in the Joint block. For Revolute, there is only one primitive type,
labeled Revolute.
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Axis of rotation [x y z]

Enter here as a three-component vector the directional axis about which
this rotational DoF can move. The default vectoris [0 0 1]. The axisis a
directed vector whose overall sign matters.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base
Body CS, or the follower Body CS) whose coordinate axes the vector axis of
rotation is oriented with respect to. This CS also determines the absolute

meaning of torque and motion about the joint axis. The default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics
interprets the topology of your schematic diagram.

~Parameters

AxBs Advanced

[~ Mark as the preferred cut jaint

One jointin each closed loop tapology will be cut automatically.
Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting
during the simulation, select the check box. The default is unselected.
See Also Disassembled Revolute, Joint Actuator, Joint Initial Condition Actuator, Joint
Sensor, Joint Stiction Actuator, Prismatic, Spherical

See “Modeling Joints” on page 4-17 for more on representing DoF's with Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting.
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Purpose

Library

Description

i

8-160

Represent a composite joint composed of two revolute primitives spatially
separated by a massless connector of constant length

Joints/Massless Connectors

The Revolute-Revolute block represents a composite joint composed of two
revolute joint primitives. The Body coordinate systems (CSs) on either side of
the Joint are each connected to a revolute primitive. The primitives are
separated spatially by a vector of constant length but variable direction
connecting the two Body CS origins. Both revolute primitives are assembled.

Caution This joint becomes singular if the two revolute primitive axes align
with the vector separating the primitives. The simulation stops with an error
in this case.

You specify the two revolute axes of these two joint primitives in the dialog box.
The distance separation between the two axes is computed automatically from
the Body CS origins to which the Joint is connected. This distance separation
(the magnitude of the vector between the Body CS origins) remains fixed at its
initial value during the simulation. This initial value must be nonzero.

You cannot connect an Actuator or Sensor to a Massless Connector.

You must connect any Joint block to two and only two Body blocks, and Joints

have a default of two connector ports for connecting to base and follower
Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the
bodies themselves. You must specify a reference CS to define the directions of
the joint axes.



Revolute-Revolute

Massless Connector between Revolute and Revolute Joints

DialogBox and
Parameters <} Block Parameters : Reyolute-Reyo - o] x|

- Description
Creates two separated revolute axes on the base (B) and follower (F) Bodies.
The separation vector between the base and fallower Body coordinate systems
changes, butthe separation distance is constant. This joint becomes singular if
the two revolute axes align with the separation vectar. Cannot he sensed or

actuated.

r Connection parameters

Current hase: =not connected=
Current follower: =not connected=
r Parameters

Ages | Advanced

Axis of rotation

Mame | Primitive [y 2] Reference cays
R1 | Revolute [[001] WORLD =
R2 | Revolute [[01 0] WORLD =

OK Cancel | Help | Apply |

The dialog box has two active areas, Connection parameters and
Parameters.
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Connection
Parameters

Parameters

8-162

Current base

When you connect the base (B) connector port on the Revolute-Revolute
block to a Body CS Port on a Body, this parameter is automatically reset to
the name of this Body CS. See the following “Revolute-Revolute base and
follower Body connector ports” figure.

Current follower

When you connect the follower (F) connector port on the Revolute-Revolute
block to a Body CS Port on a Body, this parameter is automatically reset to
the name of this Body CS. See the following “Revolute-Revolute base and
follower Body connector ports” figure.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the base or follower rotating in the right-handed
sense about its respective rotation axis.

A ¢

Revolute-Revalute

Base Body connector port

Follower Body connector port

Revolute-Revolute base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. They specify the direction of the
rotation axes of these DoF's that the Revolute-Revolute represents.

 Parameters

Aes | Advanced |

Axis of rotation
Mame | Primitive [y 2] Reference csys
F1 | Rewolute |[001] WORLD hd
R2 | Rewolute |[010] WORLD hd
Ok Cancel Help Apply




Revolute-Revolute

Name
This column automatically displays the name of each primitive joint
contained in the Joint block. For Revolute-Revolute, there are two revolute
primitives, labeled R1 and R2, connecting to base and follower, respectively.

Primitive
This column automatically displays the type of each primitive joint

contained in the Joint block. For Revolute-Revolute, there is only one
primitive type, labeled Revolute.

Axis of rotation [x y z]

Enter here as a three-component vector the directional axis about which
these rotational DoF's can move. The default vectors are [0 0 1] and [0 1
0]. The axes are directed vectors whose overall signs matter.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base
Body CS, or the follower Body CS) whose coordinate axes the vector axes of
rotation are oriented with respect to. These CSs also determine the
absolute meaning of torque and motion about the primitive axes. The
defaults are WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics
interprets the topology of your schematic diagram.

~Parameters

A¥ES Advanced

[ Mark as the preferred cut joint

Cne joint in each closed loop topology will be cut automatically.
Zheck box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting
during the simulation, select the check box. The default is unselected.
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See Also Revolute

See “Modeling Joints” on page 4-17 for more on representing DoFs with
Massless Connectors.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting.
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Purpose

Library

Description

te

Represent a composite joint composed of a revolute and a spherical primitive
spatially separated by a massless connector of constant length

Joints/Massless Connectors

The Revolute-Spherical block represents a composite joint composed of a
revolute and a spherical joint primitive. The base Body coordinate system (CS)
on one side of the Joint is connected to the revolute primitive, and the follower
Body CS is connected to the spherical primitive. The primitives are separated
spatially by a vector of constant length but variable direction connecting the
two Body CS origins. Both primitives are assembled.

Caution This joint becomes singular if the revolute primitive axis aligns with
the vector separating the primitives. The simulation stops with an error in
this case.

You specify the revolute axis of the revolute joint primitives in the dialog box.
The distance separation between the two axes is computed automatically from
the Body CS origins to which the Joint is connected. This distance separation
(the magnitude of the vector between the Body CS origins) remains fixed at its
initial value during the simulation. This initial value must be nonzero.

You cannot connect an Actuator or Sensor to a Massless Connector.

You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the
bodies themselves. You must specify a reference CS to define the direction of
the joint axis.
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Massless Connector between Revolute and Spherical Joints

DialogBox and
Parameters <} Block Parameters : Revolute-Spheri - o] x|

- Description
Creates separated revolute axis on the base (B) and spherical pivot point on the
follower (F) Bodies. The separation vectar hetween the hase and follower Body
coordinate systems changes, butthe separation distance is constant. This joint
becomes singular ifthe revolute axis aligns with the separation vector. Cannaot
he sensed or actuated.

r Connection parameters

Current hase: =not connected=
Current follower: =not connected=
r Parameters

Ages | Advanced

Axis of action
Mame | Primitive [y 2] Reference cays
R1 | Revolute [[001] WORLD =
S | Spherical |[000] WORLD |-

0K Cancel | Help | Apply

The dialog box has two active areas, Connection parameters and
Parameters.
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Connection
Parameters

Parameters

Current base

When you connect the base (B) connector port on the Revolute-Spherical
block to a Body CS Port on a Body, this parameter is automatically reset to
the name of this Body CS. See the following “Revolute-Spherical base and
follower Body connector ports” figure.

Current follower

When you connect the follower (F) connector port on the Revolute-Spherical
block to a Body CS Port on a Body, this parameter is automatically reset to
the name of this Body CS. See the following “Revolute-Spherical base and
follower Body connector ports” figure.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the base rotating in the right-handed sense about
its rotation axis or the follower pivoting as shown for the Spherical Joint.

Al

Revolute-Spherical

Base Body connector port

Follower Body connector port
Revolute-Spherical base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. They specify the direction of the
rotation axis of one of the DoF's that Revolute-Spherical represents.

 Parameters
Aues | Advanced |
Axis of action
Mame | Primitive [y 2] Reference csys
F1 | Rewolute |[001] WORLD hd
5 Spherical |[00 0] VORI [/
Ok Cancel Help Apply
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Name
This column automatically displays the name of each primitive joint
contained in the Joint block. For Revolute-Spherical, there are one revolute
and one spherical primitive, labeled R1 and S, connecting to base and
follower, respectively.

Primitive
This column automatically displays the type of each primitive joint

contained in the Joint block. For Revolute-Spherical, there are two
primitive types, labeled Revolute and Spherical.

Axis of action [x y z]
Enter here as a three-component vector the directional axis about which
the rotational DoF can move. The default vectoris [0 0 1]. The axisis a
directed vector whose overall sign matters.

This field is not active for the Spherical primitive.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base
Body CS, or the follower Body CS) whose coordinate axes the vector axis of
rotation is oriented with respect to. This CS also determines the absolute
meaning of torque and motion about the primitive axis. The default is
WORLD.

This field is not active for the Spherical primitive.

The Advanced pane is optional. You use it to control the way SimMechanics
interprets the topology of your schematic diagram.

~Parameters

Axps Advanced

[ mark as the preferred cut joint

Cne joint in each closed loop tapology will he cut automatically.
Check box to make this joint preferred for cutting.




Revolute-Spherical

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting
during the simulation, select the check box. The default is unselected.

See Also Revolute, Spherical

See “Modeling Joints” on page 4-17 for more on representing DoFs with
Massless Connectors.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting.
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Purpose

Library

Description

RotationMatri:2WR

DialogBox and
Parameters

8-170

Convert a 3-by-3 rotation matrix to an equivalent VRML form of rotation axis
and angle

Utilities

A rotation with respect to an initial orientation has many equivalent
representations. A common and important one is the 3-by-3 orthogonal rotation
matrix R, where R'! = RT and RTR = RRT = I, the 3-by-3 identity matrix.
Another important representation is the combination of rotation axis (a unit
vector n) and angle of rotation 6 about that axis. The sign of rotation follows the
right-hand-rule.

The RotationMatrix2VR block converts the 3-by-3 rotation matrix
representation of orientation to its equivalent representation as a rotation axis
and angle about that axis, the form used in Virtual Reality Modeling Language
(VRML) and the Virtual Reality Toolbox for orienting bodies. The input and
output signals are bundled Simulink signals.

The most common use of rotations is to represent the orientation of a body with
respect to some coordinate system (CS) axes.

Block Parameters: Convert frorm x|
Riotationtd atrisF [magk]

Tranzforms body orientation repregentations. Conwertz a 3« 3 rotation
matrix to a 4-component wector, a spatial unit wector plus a ratation angle
about that vector, The input must be a S-element vector reprezenting the
rotation matrix column-wize. The output format iz that required by the
Wirtual Reality Toolbox for specifying arientation.

QK I Cancel | Help Appl

The dialog box has no active areas.



RotationMatrix2VR

See Also

Representations of rotation signals
The rotation matrix R has the form:

Ry) Ryg Ryg
Rgy Rgg Ryg
Ry RBgg R

The input signal to the RotationMatrix2VR block is the R matrix components
passed column-wise and bundled into a single 9-component Simulink signal:
[R11 R21 R31 R12 ].

The output signal is the equivalent rotation represented as the axis of rotation,
a unit vector n = (nx,ny,nz), with

n*n = nx2 + ny2 2-1,

and the angle of rotation 6 about that axis. The sign of the rotation follows the
right-hand rule. The output signal is bundled into a single 4-component
Simulink signal:

[ny ny n, 6].

Body

See “Representing Body Positions and Orientations” on page 3-2 for more
details on body coordinate system rotations.

See entries on axis-angle rotation, Euler angles, quaternion, and rotation
matrix in “Glossary” for summaries of body orientation representations.

For more on virtual reality and VRML, see the Virtual Reality Toolbox User’s
Guide.
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Purpose

Library

Description

iR
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Represent a composite joint with one translational DoF and one rotational
DoF, with parallel translation and rotation axes and a linear pitch constraint
between translational and rotational motion

Joints

The Screw block represents a composite joint with one translational degree of
freedom (DoF) as one prismatic primitive and one rotational DoF as one
revolute primitive. The translation and rotation axes are parallel. The
translational and rotational DoF's are constrained by a pitch constraint to have
proportional motion.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Screw block is assembled: the origins of
these Body CSs must lie along the primitive axes. But the Body CS origins on
either side of the Joint do not need to be spatially collocated points.

You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the
bodies themselves. You must specify a reference CS to define the direction of
the joint axis.




Screw

DialogBox and

Parameters

Connection
Parameters

<} Block Parameters : Screw - o] x|

rDescription

Represents one translational and one rotational degrees of freedam,
with constraint. Restricts the Follower (F) to move in helical motion
along and around axis R1 relative to the Base (B) Body. Translation
and rotation constrained to each other by pitch. R1 attached to Base
and Fallower. Sensar and actuator ports can be added. Base-Follower
seguence and axis direction determine sign of forward mation.

r Connection parameters
Current hase: =not connected=
Current follower: =not connected=
Murmber of sensor f actuator ports: lﬂ

 Parameters

Axes | Advanced |

Axis of rotation
Mame | Primitive [y 2] Reference cays

R1 | Revalute |[100] WORLD 4

r Pitch parameters

Fitch: 1

Units {per revolution): mim LI

Ok | Cancel | Help | Apply

Current base

The dialog box has three active areas, Connection parameters, Parameters,
and Pitch parameters.

When you connect the base (B) connector port on the Screw block to a Body
CS Port on a Body, this parameter is automatically reset to the name of this
Body CS. See the following “Screw base and follower Body connector ports”

figure.

The base Body is automatically connected to the joint primitive R1 in the

primitive list in Parameters.
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Parameters

8-174

Current follower

When you connect the follower (F) connector port on the Screw block to a
Body CS Port on a Body, this parameter is automatically reset to the name
of this Body CS. See the following “Screw base and follower Body connector
ports” figure.

The follower Body is automatically connected to the joint primitive R1 in
the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Joint Actuator and Joint Sensor blocks to this Joint.
The default is 0.

The motion of revolute primitives is specified in angular units.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the follower moving around the rotational axis
following the right-hand rule.

Base Body connector port
\c Ve

Sorew

Sv\Follower Body connector port

Screw base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in Screw has
an entry line. These lines specify the direction of the axes of action of the DoF's
that the Screw represents.

Name - Primitive
The primitive list states the name and type of the joint primitive that
makes up the Screw block: revolute primitive R1.

Axis of action [x y z]
Enter here as a three-component vector the directional axes defining the
allowed motions of this primitive and its corresponding DoF:

= Revolute: axis of rotation



Screw

The default vectors are shown in the dialog box above. The axis is a directed
vector whose overall sign matters.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base
Body CS, or the follower Body CS) whose coordinate axes the vector axis of
action is oriented with respect to. This CS also determines the absolute
meaning of forces/torques and motion along/about the joint axis. The
default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics
interprets the topology of your schematic diagram.

~Parameters

Axps Advanced

[ mark as the preferred cut joint

Cne joint in each closed loop tapology will he cut automatically.
Check box to make this joint preferred for cutting.

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting
during the simulation, select the check box. The default is unselected.

Pitch The Pitch parameters control how far the screw translates for each revolution.
Parameters
Pitch parameters
Pitch: 1
Linits {per revalution): i LI
Pitch

Linear distance the screw travels along the screw axis for each complete
revolution (turn) of 2r radians (360°). The default is 1.
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Units (per revolution)

In the pull-down menu, choose the units for the pitch linear distance. The
default is mm (millimeters).

See Also Cylindrical, Prismatic, Revolute
See “Modeling Joints” on page 4-17 for more on representing DoF's with Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting.
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Purpose
Library

Description

I/

Represent a composite joint with three translational and three rotational DoFs
Joints

The Six-DoF block represents a composite joint with three translational
degrees of freedom (DoF's) as three prismatic primitives and three rotational
DoF's as one spherical primitives. There are no constraints among the
primitives. Unlike Bushing, Six-DoF represents the rotational DoFs as one
spherical, rather than as three revolutes.

Caution A joint with three prismatic primitives becomes singular if two or
three of the translation axes become parallel. The simulation stops with as
error in this case.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Six-DoF block is assembled: the origins of
these Body CSs must lie along the primitive axes, and the Body CS origins on
either side of the Joint must be spatially collocated points, to within assembly
tolerances.

You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the
bodies themselves. You must specify reference CSs to define the directions of
the joint axes.
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DialogBox and
Parameters <} Block Parameters : Six-DoF - o] x|

rDescription

Represents three translational and three rotational degrees of
freedom. Rotational DaoF s are in one spherical primitive. Represents
mast general mation of the follower (F) with respect to the hase (B)
Body. P1 attached to base. 5 attached to follower. Listed order of
primitives is order of motion during simulation. Sensar and actuator
ports can be added. Spherical primitive cannot he actuated.
Base-follower sequence and axes directions determine sign of
forward mation. This joint hecames singular if twa prismatics align.

r Connection parameters
Current hase: =not connected=
Current follower: =not connected=
Murmber of sensor f actuator ports: lﬂ

 Parameters
Axes | Advanced |
Axis of action
Marme | Primitive [y 2] Reference csys
F1 Frismatic |[1 0 0] WORLD hd
P2 | Prismatic|[01 0] WORLD hd
P3| Prismatic|[001] WORLD hd
5 Spherical |[00 0] VORI [/
QK | Cancel | Help | Apply |

The dialog box has two active areas, Connection parameters and

Parameters.
Connection Current base
Parameters When you connect the base (B) connector port on the Six-DoF block to a

Body CS Port on a Body, this parameter is automatically reset to the name
of this Body CS. See the following “Six-DoF base and follower Body
connector ports” figure.

The base Body is automatically connected to the first joint primitive P1 in
the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Six-DoF block to a
Body CS Port on a Body, this parameter is automatically reset to the name
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Parameters

of this Body CS. See the following “Six-DoF base and follower Body
connector ports” figure.

The follower Body is automatically connected to the last joint primitive S
in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Joint Actuator and Joint Sensor blocks to this Joint.
The default is 0.

The motion of prismatic primitives is specified in linear units. The motion
of spherical primitives is specified by a dimensionless quaternion.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of the
translation axis. Positive spherical motion is the follower rotating in the
right-handed sense as shown in the Spherical block figure.

Base Body connector port
+—F

Siw-DoF

C“\Follower Body connector port

Six-DoF base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in Six-DoF has
an entry line. These lines specify the direction of the axes of action of the DoFs
that the Six-DoF represents.

Name - Primitive
The primitive list states the names and types of joint primitives that make
up the Six-DoF block: prismatic primitives P1, P2, P3, and spherical
primitive S.

Axis of action [x y z]
Enter here as a three-component vector the directional axes defining the
allowed motions of these primitives and their corresponding DoF's:

= Prismatic: axis of translation
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= Spherical: field is not active

The default vectors are shown in the dialog box above. The axis is a directed
vector whose overall sign matters.

To prevent singularities and simulation errors, no two of the prismatic axes
can be parallel.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base
Body CS, or the follower Body CS) whose coordinate axes the vector axis of
action is oriented with respect to. This CS also determines the absolute
meaning of forces/torques and motion along/about the joint axis. The
default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics
interprets the topology of your schematic diagram.

~Parameters

A¥ES Advanced

[ Mark as the preferred cut joint

Cne joint in each closed loop topoloogy will he cut automatically.
Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting
during the simulation, select the check box. The default is unselected.

See Also Bushing, Gimbal, Prismatic, Spherical
See “Modeling Joints” on page 4-17 for more on representing DoF's with Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting.
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Purpose

Library

Description

@

Represent an assembled spherical joint with three rotational degrees of
freedom

Joints

The Spherical block represents three rotational degrees of freedom (DoF's) at a
single pivot point, a “ball-in-socket” joint. Two rotational DoF's specify a
directional axis, and a third rotational DoF specifies rotation about that
directional axis. The sense of each rotational DoF is defined by the right-hand
rule, and the three rotations together form a right-handed system. A spherical
joint is one of the SimMechanics primitive joints, along with prismatic and
revolute.

The Spherical block is assembled: you must connect each side of the Joint block
to a Body block at a Body coordinate system (CS) point, and the origins of these
Body CSs must be spatially collocated points, within assembly tolerances.

You cannot connect an Actuator to a Spherical. Unlike the Gimbal block, the
Spherical block cannot become singular.

You can connect all Joint blocks to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies.

Any Joint block represents only the abstract relative motion of two bodies, not
the bodies themselves.
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Spherical motion of follower (blue) relative to base (red)

DialogBox and
Parameters <} Block Parameters : Spherical - o] x|

rDescription

Represents three rotational degrees of freedom. The follawer (F) bady
pivots freely relative to the hase (B) Body at the collocated Body
coordinate system origins. Sensar ports can be added. Spherical joint
cannot be actuated. Base-follower seguence determines sign of
forward motion.

r Connection parameters
Current hase: =not connected=
Current follower: =not connected=
Murmber of sensor f actuator ports: lﬂ

 Parameters

Ages | Advanced

Reference
Mame | Primitive arientation [xy 2] Reference cays
5 | spherical [00 0] WORLD |
Ok | Cancel | Help | Apply |

The dialog box has two active areas, Connection parameters and
Parameters.
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Connection
Parameters

Parameters

Current base

When you connect the base (B) connector port on the Spherical block to a
Body CS Port on a Body, this parameter is automatically reset to the name
of this Body CS. See the following “Spherical base and follower Body
connector ports” figure.

Current follower

When you connect the follower (F) connector port on the Spherical block to
a Body CS Port on a Body, this parameter is automatically reset to the
name of this Body CS. See the following “Spherical base and follower Body
connector ports” figure.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Joint Sensor blocks to this Joint. The default is 0. A
Spherical cannot be connected to a Joint Actuator.

The motion of a Spherical is three DoF's specified in quaternion form.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the follower rotating in the right-handed sense as
shown in the figure above.

e

Spherical

Base Body connector port

Follower Body connector port

Spherical base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are automatic. They specify the orientation of the
spherical DoF that the Spherical represents.
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 Parameters
Ages | Advanced
Reference
Mame | Primitive arientation [xy 2] Reference cays
5 | spherical|[00] WORLD |
oK Cancel Help | Apply |
Name

This column automatically displays the name of each primitive joint
contained in the Joint block. For Spherical, there is only one primitive
joint, a spherical, labeled S.

Primitive
This column automatically displays the type of each primitive joint
contained in the Joint block. For Spherical, there is only one primitive type,
labeled Spherical.

Reference orientation [x y z]
This field is not active.

Reference csys
This field is not active.

The Advanced pane is optional. You use it to control the way SimMechanics
interprets the topology of your schematic diagram.

~Parameters

Axps Advanced

[ mark as the preferred cut joint

Cne joint in each closed loop tapology will he cut automatically.
Check box to make this joint preferred for cutting.




Spherical

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting
during the simulation, select the check box. The default is unselected.

See Also Disassembled Spherical, Gimbal, Joint Sensor, Prismatic, Revolute
See “Modeling Joints” on page 4-17 for more on representing DoF's with Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting.

8-185



Spherical-Spherical

Purpose

Library

Description

S
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Represent a composite joint composed of two spherical primitives spatially
separated by a massless connector of constant length

Joints/Massless Connectors

The Spherical-Spherical block represents a composite joint composed of two
spherical joint primitives. The Body coordinate systems (CSs) on either side of
the Joint are connected to the spherical primitives. The primitives are
separated spatially by a vector of constant length but variable direction
connecting the two Body CS origins. Both primitives are assembled.

The distance separation between the two axes is computed automatically from
the Body CS origins to which the Joint is connected. This distance separation
(the magnitude of the vector between the Body CS origins) remains fixed at its
initial value during the simulation. This initial value must be nonzero.

You cannot connect an Actuator or Sensor to a Massless Connector.

You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the
bodies themselves. You must specify a reference CS to define the directions of
the joint axes.

Massless Connector between Spherical and Spherical Joints




Spherical-Spherical

DialogBox and
Parameters

Connection
Parameters

<} Block Parameters : Spherical-Sph - ol x|

- Description
Creates two separated spherical pivot points on the base (B) and fallower (F)
Bodies. The separation vectar hetween the hase and follower Body coordinate
systems changes, butthe separation distance is constant. Cannot be sensed
or actuated.

r Connection parameters

Current hase: =not connected=
Current follower: =not connected=
r Parameters

Ages | Advanced

Reference
Mame | Primitive arientation [x v 2] Reference cays
51 | Spherical |[000] WORLD |-
52 | Spherical |[000] WORLD |-

0K Cancel | Help | Apply

The dialog box has two active areas, Connection parameters and
Parameters.

Current base

When you connect the base (B) connector port on the Spherical-Spherical

block to a Body CS Port on a Body, this parameter is automatically reset to
the name of this Body CS. See the following “Spherical-Spherical base and
follower Body connector ports” figure.

Current follower

When you connect the follower (F) connector port on the
Spherical-Spherical block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
“Spherical-Spherical base and follower Body connector ports” figure.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the base or follower pivoting as shown by the
motion figure in the Spherical block reference page.
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Base Body connector port

\ca@‘—@F

Spherical-Spherical

OV\Follower Body connector port

Spherical-Spherical base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are automatic. They specify the orientation of the
spherical DoF's that the Spherical-Spherical represents.

 Parameters

Augs | Advanced

MName [ Primitive

Reference
arientation [xy 2]

Reference cays

51 Spherical |[000 0]

WORLD

52 | Spherical [0 0 0]

WORLD

-
-

Ok

Cancel

Help

Apply

Name

This column automatically displays the name of each primitive joint
contained in the Joint block. For Spherical-Spherical, there are two
spherical primitives, labeled S1 and S2, connecting to base and follower,

respectively.

Primitive

This column automatically displays the type of each primitive joint
contained in the Joint block. For Spherical-Spherical, there is only one
primitive type, labeled Spherical.

Reference orientation [x y z]

These fields are not active.

Reference csys

These fields are not active.



Spherical-Spherical

See Also

The Advanced pane is optional. You use it to control the way SimMechanics
interprets the topology of your schematic diagram.

~Parameters

A¥ES Advanced

[ Mark as the preferred cut joint

Cne joint in each closed loop topoloogy will he cut automatically.
Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting
during the simulation, select the check box. The default is unselected.
Spherical

See “Modeling Joints” on page 4-17 for more on representing DoF's with
Massless Connectors.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting.
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Purpose
Library

Description

pa
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Represent a composite joint with one translational and three rotational DoFs
Joints

The Telescoping block represents a composite joint with one translational
degree of freedom (DoF) as one prismatic primitive and three rotational DoF's
as one spherical primitive. There are no constraints among the primitives.
Unlike Bearing, Telescoping represents the rotational DoF's as one spherical,
rather than as three revolutes.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Telescoping block is assembled: the origins
of these Body CSs must lie along the primitive axes, and the Body CS origins
on either side of the Joint must be spatially collocated points, to within
assembly tolerances.

You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the
bodies themselves. You must specify a reference CS to define the direction of
the joint axis.




Telescoping

DialogBox and
Parameters

Connection
Parameters

<) Block Parameters - Telescopin

rDescription

=10 x|

Rotational DoFs are in ane spherical primitive. The follower (F) pivots
freely at collocated Body coordinate systemn origing and translates
along primitive prismatic axis P1 relative to the base (B) Body . 5 is
attached to base. P1 is attached to follower. Listed arder of primitives
is order of motion during simulation. Sensor and actuatar ports can be
added. Spherical primitive cannot be actuated. Base-follower
seguence and axis direction determine sign of forward mation.

Represents three rotational and one translational degrees of freedaom.

r Connection parameters

Current hase: =not connected=

Current follower: =not connected=

Murmber of sensor f actuator ports: ID 3:

 Parameters

Axes | Advanced |

Axis of action
Marme | Primitive [y 2] Reference csys
5 Spherical |[00 0] WORLD [
F1 Frismatic |[1 0 0] WORLD hd

Ok | Cancel | Help | Apply

Current base

The dialog box has two active areas, Connection parameters and
Parameters.

When you connect the base (B) connector port on the Telescoping block to
a Body CS Port on a Body, this parameter is automatically reset to the
name of this Body CS. See the following “Telescoping base and follower

Body connector ports” figure.

The base Body is automatically connected to the first joint primitive S in

the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Telescoping block
to a Body CS Port on a Body, this parameter is automatically reset to the
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Parameters
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name of this Body CS. See the following “Telescoping base and follower
Body connector ports” figure.

The follower Body is automatically connected to the last joint primitive P1
in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Joint Actuator and Joint Sensor blocks to this Joint.
The default is 0.

The motion of prismatic primitives is specified in linear units. The motion
of spherical primitives is specified by a dimensionless quaternion.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of the
translation axis. Positive spherical motion is the follower rotating in the
right-handed sense as shown in the Spherical block figure.

Base Body connector port \C
O\Follower Body connector port

Telescoping

Telescoping base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in Telescoping
has an entry line. These lines specify the direction of the axes of action of the
DoF's that Telescoping represents.

Name - Primitive
The primitive list states the names and types of joint primitives that make
up the Telescoping block: spherical primitive S and prismatic primitives P1.
Axis of action [x y z]
Enter here as a three-component vector the directional axes defining the
allowed motions of these primitives and their corresponding DoF's:
= Prismatic: axis of translation

= Spherical: field is not active



Telescoping

The default vectors are shown in the dialog box above. The axis is a directed
vector whose overall sign matters.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base
Body CS, or the follower Body CS) whose coordinate axes the vector axis of
action is oriented with respect to. This CS also determines the absolute
meaning of forces/torques and motion along/about the joint axis. The
default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics
interprets the topology of your schematic diagram.

~Parameters

Axps Advanced

[ mark as the preferred cut joint

Cne joint in each closed loop tapology will he cut automatically.
Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting
during the simulation, select the check box. The default is unselected.

See Also Bearing, Prismatic, Six-DoF, Spherical
See “Modeling Joints” on page 4-17 for more on representing DoF's with Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting.
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Purpose
Library

Description

Te
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Represent a composite joint with two rotational DoF's
Joints
The Universal block represents a composite joint with two rotational degrees

of freedom (DoF's) as two revolute primitives. There are no constraints among
the primitives.

Caution A joint with two revolute primitives becomes singular if the two
rotation axes become parallel (“gimbal lock”). The simulation stops with an
error in this case.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Universal block is assembled: the origins of
these Body CSs must be spatially collocated points, within assembly
tolerances.

You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies.



Universal

|

A Joint block represents only the abstract relative motion of two bodies, not the
bodies themselves. You must specify reference CSs to define the directions of
the joint axes.
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DialogBox and
Parameters

<} Block Parameters : Universal - o] x|

rDescription

Represents two rotational degrees of freedom. The Follawer (F)
rotates with respect to the Base (B) Body around two primitive revolute
axes (R1, R2). R1 attached to Base. R2 attached to Faollower. Listed
arder of primitives is order of motion during simulation. Sensar and
actuator ports can he added. Base-Follower sequence and axes
directions determine sign of forward mation. This joint becomes
singular if hoth revolutes align.

r Connection parameters

Current hase: =not connected=
Current follower: =not connected=
Murmber of sensor f actuator ports: ID 3:

 Parameters

Axes | Advanced |

Axis of rotation
Mame | Primitive [y 2] Reference csys
F1 | Rewolute |[001] WORLD hd
R2 | Rewolute |[010] WORLD hd
Ok | Cancel | Help | Apply |

The dialog box has two active areas, Connection parameters and
Parameters.

Connection Current base

Parameters When you connect the base (B) connector port on the Universal block to a

Body CS Port on a Body, this parameter is automatically reset to the name
of this Body CS. See the following “Universal base and follower Body
connector ports” figure.

The base Body is automatically connected to the first joint primitive R1 in
the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Universal block to
a Body CS Port on a Body, this parameter is automatically reset to the

name of this Body CS. See the following “Universal base and follower Body
connector ports” figure.
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Parameters

The follower Body is automatically connected to the last joint primitive R2
in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Joint Actuator and Joint Sensor blocks to this Joint.
The default is 0.

The motion of revolute primitives is specified in angular units.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the follower moving around the rotational axis
following the right-hand rule.

Base Body connector port
\c iﬁ o
\ Follower Body connector port

Universal base and follower Body connector ports

Universal

Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in Universal
has an entry line. These lines specify the direction of the axes of action of the
DoF's that the Universal represents.

Name - Primitive
The primitive list states the names and types of joint primitives that make
up the Universal block: revolute primitives R1, R2.

Axis of action [x y z]
Enter here as a three-component vector the directional axes defining the
allowed motions of these primitives and their corresponding DoFs:

= Revolute: axis of rotation

The default vectors are shown in the dialog box above. The axis is a directed
vector whose overall sign matters.

To prevent singularities and simulation errors, the two revolute axes
cannot be parallel.
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Reference csys

Using the pull-down menu, choose the coordinate system (World, the base
Body CS, or the follower Body CS) whose coordinate axes the vector axis of
action is oriented with respect to. This CS also determines the absolute
meaning of forces/torques and motion along/about the joint axis. The
default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics
interprets the topology of your schematic diagram.

~Parameters

A¥ES Advanced

[ Mark as the preferred cut joint

Cne joint in each closed loop topoloogy will he cut automatically.
Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting
during the simulation, select the check box. The default is unselected.

See Also Gimbal, Revolute
See “Modeling Joints” on page 4-17 for more on representing DoF's with Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting.
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Variable Mass & Inertia Actuator

Purpose

Library

Description

%o

Varies the mass and inertia on a body at a specific body coordinate system as
a function of time (not including thrust force or torque)

Sensors & Actuators

The Variable Mass & Inertia Actuator block allows you to vary the mass m
and/or inertia tensor I of the Body to which it is connected. The general form of
Newton’s second law for linear or angular motion is

(mass or inertia) * acceleration = external force or torque

This block externally varies the leftmost parameter in this law of motion with
a Simulink signal.

Note The Variable Mass & Inertia Actuator does not apply any thrust forces
or torques associated with the Body’s mass loss or gain. Such thrust effects
would occur on the left-hand side of the force or torque law as terms
proportional to the time derivatives of the mass or inertia tensor, dm/dt or
dZ/dt, multiplied by the related thrust velocities. You must separately apply
such thrust forces or torques to the Body with Body Actuators.

How the Actuator Varies a Body’s Mass and Inertia Tensor

You connect the Variable Mass & Inertia Actuator block to the original,
user-supplied Body at a Body coordinate system (CS). You can connect multiple
Variable Mass & Inertia Actuators to a single Body, each Actuator at a
separate Body CS port. If Body CS ports are lacking, open the Body dialog and
create them as needed.

At each Body CS so connected, the Variable Mass & Inertia Actuator creates
an invisible body. The attachment is equivalent to connecting another Body
with a Weld, except that the other body’s mass properties vary with time. This
invisible body has a time-varying mass and/or symmetric inertia tensor
supplied by the external Simulink signal. The center of gravity coordinate
system (CG CS) of the invisible body is identical to the attached Body CS. The
inertia tensor of the invisible body is evaluated at this CS, in this coordinate
system’s axes.
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SimMechanics creates a combined or composite body, made of the invisible,
time-varying body created by the Actuator and the original, user-supplied
Body. The total mass of the composite body is the sum of the visible Body and
the invisible body’s masses. The CG of this composite body is recomputed at
each time step. The inertia tensor of the composite body is formed at each time
step by combining the inertia tensors of the visible Body and the invisible body.
The combined inertia tensor is then evaluated at the composite body’s new CG.

The time-varying mass and inertia tensor of the invisible body must satisfy
these requirements:
® The mass and principal inertial moments can be positive, negative, or zero.

The only restriction is that the total mass and the principal inertial moments
of the composite body be nonnegative.

® The time-varying inertia tensor of the invisible body must be symmetric.

You can mix variable mass and/or variable inertia tensor actuation.

Actuation Effect on Connected Body

Variable mass alone Adds a time-varying point mass at the
attached Body CS

Variable inertia tensor alone Adds time-varying inertia tensor at the

attached Body CS without changing the
composite body’s total mass

Variable mass and inertia tensor Adds invisible body with time-varying
combined mass and inertia tensor at the attached
Body CS

What Does Not Vary in the User-Supplied Body

While the invisible, attached body and the invisible composite body have
time-varying mass properties, you do not see any visible changes in the original
Body that you are actuating. The mass properties in its dialog do not change.

If you are visualizing the varying-mass/inertia actuated Body as an equivalent
ellipsoid, the ellipsoid is rendered using the static data in the Body dialog itself.
The ellipsoid rendering ignores the effect of any Variable Mass & Inertia
Actuators attached to the Body. See “Rendering Body Shapes in
SimMechanics” on page 6-5.



Variable Mass & Inertia Actuator

Dialog Box and

Parameters

Actuation

<} Block Parameters: Var - |D|i|

rvariable Mass & Inertia Actuatar

Waries the mass andfor inertia tensor of the connected
Body. Attaches to the connected Body coordinate system
(C5) an invisible body of time-varying mass andior inettia
tensar. Time-varying mass and inertia tensor are
transformed from the attached C5 to the new common
center of gravity and added to the values supplied in the
Body dialog. Multiple time-varying masses and inertia
tensars can be added to a Body. Inputis a Simulink
signal with ane, nine, arten companents.

r Actuation

Time-varying mass properies:

¥ Mass kg -
™ Inettia tensor kg*m®2 -
0134 | Cancel Help Apply

The dialog box has one active area, Actuation.

You can apply a variable mass, a variable inertia tensor, or both, to a body.

If you apply both, you need to bundle the variable mass and inertia tensor into
a 10-component signal, in the order shown in the dialog box.

Mass
Select the check box to apply an external time-varying mass from the input
Simulink signal. In the pull-down menu to the right, select units for this
time-varying mass. The default is kg (kilograms).

Inertia tensor
Select the check box to apply an external time-varying inertia tensor from
the input Simulink signal. In the pull-down menu to the right, select units
for this time-varying inertia tensor. The default is kg-m?
(kilogram-meters?).
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References

See Also

8-202

The Simulink input signal has the following components. For variable mass or
inertia tensor actuation alone, omit the missing components.

Time-varying mass (scalar) Time-varying inertia tensor (9-vector):
(Iy1, 191, I3y, L1y, -..)

Corbin, H. C., and P. Stehle, Classical Mechanics, Second Edition, New York,
Dover Publications, 1994 (original edition, 1960), chapters 2, 5, and 9.

Goldstein, H., Classical Mechanics, Second Edition, Reading, Massachusetts,
Addison-Wesley, 1980, chapters 4 and 5.

Piscane, V. L., and R. C. Moore, eds., Fundamentals of Space Systems, Johns
Hopkins University/Applied Physics Laboratory Series, New York, Oxford
University Press, 1994, chapters 3, 4, and 5.

Body, Body Actuator, Weld

See “Varying a Body’s Mass and Inertia Tensor” on page 4-43 for more on
varying the mass and inertia tensor of a body.



Velocity Driver

Purpose

Library

Description

&S

Specify a linear combination of the linear and angular velocities of two bodies
as a function of time

Constraints & Drivers

The Velocity Driver block drives a linear combination of the projected
translational and angular velocities of two Bodies. The velocities are projected
by inner products on to constant vectors you specify.

Let vg, vg be the two body velocity vectors and wg, o be the two body angular
velocity vectors. Let cg, ¢, dg, dp be constant vectors. The subscripts ‘B’ and
‘F’ refer to base and follower bodies. The Velocity Driver block specifies this
linear combination:

Cp-Vp + dB'COB -Cp Vp- dF'(DF =f(t)

as a function of time f{¢). You specify the vectors cg, ¢, dg, dp. You also connect
a Driver Actuator block to the Velocity Driver.

The Simulink input signal into the Driver Actuator specifies the
time-dependent driving function f(¢) and its first two derivatives, as well as
their units. If you do not actuate Velocity Driver, this block acts as a
time-independent constraint that freezes the constraint linear combination at
its initial value during the simulation.

Drivers restrict relative degrees of freedom (DoF's) between a pair of bodies as
specified functions of time. Locally in a machine, they replace a Joint as the
expression of the DoFs. Globally, Driver blocks must occur topologically in
closed loops. Like Bodies connected to a Joint, the two Bodies connected to a

Drivers are ordered as base and follower, fixing the direction of relative motion.

You can also connect a Constraint & Driver Sensor to any Driver block and
measure the reaction forces/torques between the driven bodies.
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DialogBox and
Parameters

Connection
Parameters
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) Block Parameters : Velocity Driver

=0l x|

—Description

Drives a linear combination of projected linear and angular velocities of the base (B} and follower (F)
Bodias with a specified Divver Actuator slgnal. Sensor and actuator ports can be added. Base-follower

seguence determinges sign af forward mation,

Connection paramefers
Cutrent base:

Current follower:

Murmber of sensor f actuator pons:

~ Paramaters

Angular velocify units:

Linear velocity units

Velocity cosflicients for base
Angular velacity:
Linear velocity:

Velocity coefcients for follower
Angular velocky:

Linaar velacity.

=not connectad=

=not connectad=

=

[seos =

Imfs ﬂ
[eva] Fixad in csys

[100) |WORU3 ﬂ

(100 [worLD =
v Fixed in csvs

|[1 0] [worLD 4|

|[1 00 [worLD Rd |
ok | concet | mew | apew |

The dialog box has two active areas, Connection parameters and

Parameters.

Current base

When you connect the base (B) connector port on the Velocity Driver block
to a Body CS Port on a Body, this parameter is automatically reset to the
name of this Body CS. See the following “Velocity Driver base and follower

Body connector ports” figure.

Current follower

When you connect the follower (F) connector port on the Velocity Driver
block to a Body CS Port on a Body, this parameter is automatically reset to
the name of this Body CS. See the following “Velocity Driver base and

follower Body connector ports” figure.




Velocity Driver

Parameters

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Driver Actuator and Constraint & Driver Sensor
blocks to this Driver. The default is 0.

To activate the Driver, connect a Driver Actuator.

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of the
translation axis. Positive rotation is the follower rotating in the right-handed
sense about the rotation axis.

S G

“Welacity Criver

Base Body connector port

Follower Body connector port

Velocity Driver base and follower Body connector ports

Angular velocity units

From the pull-down menu, choose the common units for all angular
velocities. The default is deg/s (degrees/second).

The vectors dg and dp implicitly carry the units conversion of length/angle.
The driving function f{z) has the linear velocity units that you set in the
Driver Actuator block that you connect to Velocity Driver. If the f(¢) units
differ from the units set in Linear velocity units in this dialog box, the
vectors dg and dy implicitly carry the additional units conversion.

Linear velocity units

From the pull-down menu, choose the common units for all linear
velocities. The default is m/s (meters/second).

The driving function f{z) has the linear velocity units that you set in the
Driver Actuator block that you connect to the Velocity Driver. If the f(z)
units differ from the units set here, the vectors cg and cp implicitly carry
the units conversion.
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See Also
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Velocity coefficients for base

Under [x y z], enter the Angular velocity and Linear velocity coefficient
vectors for the base Body. These are the components of dg and cg,
respectively. The defaults are [1 0 0].

In the pull-down menus, choose the coordinate systems (WORLD or BASE)
whose coordinate axes the vectors dg and cp are oriented with respect to.
The defaults are WORLD.

The vectors dg and cg carry the implicit units conversion to convert all
velocities to the common linear velocity units of () that you set in the
connected Driver Actuator block.

Velocity coefficients for follower

Under [x y z], enter the Angular velocity and Linear velocity coefficient
vectors for the follower Body. These are the components of dy and cp,
respectively. The defaults are [1 0 0].

In the pull-down menus, choose the coordinate systems (WORLD or
FOLLOWER) whose coordinate axes the vectors dp and cy are oriented with
respect to. The defaults are WORLD.

The vectors dp and ¢y carry the implicit units conversion to convert all
velocities to the common linear velocity units of f(z) that you set in the
connected Driver Actuator block.

Angle Driver, Constraint & Driver Sensor, Driver Actuator, Parallel
Constraint

See “Modeling Constraints and Drivers” on page 4-34 for more on restricting
DoF's with Drivers.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on using drivers in closed loops.

See “Constraining and Driving Motion” on page 8-6.



Weld

Purpose
Library

Description

o

Represent a joint with no DoFs
Joints

The Weld block represents a joint with no degrees of freedom (DoF's). The two
Bodies connected to either side of the Weld block are locked rigidly to one
another, with no possible relative motion.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Weld block is assembled: the origins of these
Body CSs must lie along the primitive axes, within assembly tolerances. But
the Body CS origins on either side of the Joint do not have to be spatially
collocated points.

You must connect any Joint block to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the
bodies themselves.
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DialogBox and
Parameters <} Block Parameters : Weld - o] x|

rDescription
Represents zero degrees of freedom. Rigidly connects the hase (B) and
follower (F) Bodies in initial relative configuration. Sensor ports can be added.
Weld joint cannot be actuated.

r Connection parameters

Current hase: =not connected=
Current follower: =not connected=
Murmber of sensor f actuator ports: =

r Parameters

Ages | Advanced

Axis of action
Mame | Primitive [y 2] Reference cays
W Weld |[000] YWORLD L'
Ok | Cancel | Help | Apply |

The dialog box has two active areas, Connection parameters and

Parameters.
Connection Current base
Parameters When you connect the base (B) connector port on the Weld block to a Body

CS Port on a Body, this parameter is automatically reset to the name of this
Body CS. See the following “Weld base and follower Body connector ports”
figure.

The base Body is automatically connected to the joint primitive W in the
primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Bushing block to
a Body CS Port on a Body, this parameter is automatically reset to the
name of this Body CS. See the following “Weld base and follower Body
connector ports” figure.
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Parameters

The follower Body is automatically connected to the joint primitive W in the
primitive list in Parameters.
Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports
needed for connecting Joint Sensor blocks to this Joint. The default is 0.

You cannot actuate a Weld joint, and a Weld joint undergoes no motion. A Joint
Sensor measures zero motion, but in general nonzero reaction forces, at this
joint.

Base Body connector port

\CI-EI-I

Weld

O‘\Follower Body connector port

Weld base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are inactive for Weld. This block has no DoF
primitives.

Name - Primitive

The primitive list states the names and types of joint primitives that make
up the Weld block: a rigid primitive W representing no motion.

Axis of action [x y z]
This field is inactive.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base
Body CS, or the follower Body CS) whose coordinate axes the vector axis of
action is oriented with respect to. This CS also determines the absolute
meaning of forces/torques and motion along/about the joint axis. The
default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics
interprets the topology of your schematic diagram.
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See Also

8-210

~Parameters

Axps Advanced

[ Mark as the preferred cut joint

Cne joint in each closed loop topoloogy will he cut automatically.
Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting
during the simulation, select the check box. The default is unselected.

Distance Driver
See “Modeling Joints” on page 4-17 for more on representing DoFs with Joints.

See “Checking Schematic Topology” on page 4-64 and “How SimMechanics
Works” on page 5-14 for more on closed loops and cutting.



SimMechanics Command
Reference

This table indicates the tasks performed by the command described in this chapter.

Command Purpose

mech_stateVectorMgr Display and set machine state vector



mech_stateVectorMgr

Purpose

Synopsis

Description

9-2

Display and set the machine state with a state vector manager
You must call mech_statevVectorMgr with one argument, the pathname or
handle of any block in the machine whose state you want:

MachineState = mech_stateVectorMgr('pathname')
MachineState = mech_stateVectorMgr('handle')

You obtain the pathname and handle with the Simulink gcb and gcbh
commands.

You can also call mech_stateVectorMgr with an indirect call to the block
pathname or handle. Select one of the SimMechanics blocks in the machine and
enter one of these commands:

MachineState
MachineState

mech_stateVectorMgr(gcb)
mech_stateVectorMgr(gcbh)

The command mech_stateVectorMgr returns an object MachineState.

The state manager object includes only the state of a machine made of

SimMechanics blocks. Simulink associates the machine to one of the machine’s
Ground blocks.

The total number of state components is

N = 2%(# of prismatics + # of revolutes) + 8*(# of sphericals)
+ (# of Point-Curve Constraints),

not including any motion-actuated joint primitives. The machine state consists
of all the linear/angular positions and velocities of all degrees of freedom (DoF's)
in the machine:

¢ Prismatic and revolute joint primitives each have two state components, a
position and a velocity.

® Spherical joint primitives each have eight state components, a quaternion
and a quaternion derivative.

® A joint primitive actuated by a Joint Initial Condition Actuator is counted
like other joint primitives. But because the JICA externally specifies such a
primitive’s initial position and velocity, the primitive has an active
FixedAtT_0 flag.
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Input
Arguments

Output
Arguments

¢ Point-Curve Constraints each have one predictor state component, the arc
parameter velocity of the point along the curve.

Joint Primitives Not Counted As Degrees of Freedom
e If the joint primitive is motion actuated with a Joint Actuator block, that
joint primitive is not counted in the machine state components.

¢ The weld primitive contributes no state components.

There is one input argument. The argument must be a SimMechanics block’s
full pathname or handle, or an indirect call to the pathname or handle using
the commands gcb or gcbh.

The state manager obtained from the command references the machine to
which this block belongs. The full path name starts with the model name and
continues through any subsystem hierarchy:

pathname = modelname/subsystemi/etc.../blockname

You can obtain the pathname or handle of any block by selecting that block in
a window and entering gcb or gcbh at the command line.

You can combine these steps into one step with an indirect pathname or handle
call. Select a SimMechanics block in the model window and enter either
command:

mech_stateVectorMgr(gchb)
mech_stateVectorMgr(gcbh)

instead.
The output of mech_stateVectorMgr is a MachineState object of the
MECH.StateVectorMgr class.

A machine is a connected set of SimMechanics blocks. Each machine must have
at least one Ground block. Simulink chooses one of the Ground blocks as the
machine root. This root serves as a proxy for the whole machine.

The MachineState object has four properties.

9-3



mech_stateVectorMgr

Property Variable Type Content

MachineState.MachineName string ‘modelname/subsystemi/etc
.../rootgroundblock'

MachineState.X 1-by-N real array [00 ... 0]

MachineState.BlockStates array of N block state managers dJoint primitive and

Point-Curve Constraint states

MachineState.StateNames cell array of N strings Names of joint primitives and

Point-Curve Constraints

Querying the
State Manager
Object

Examples

94

Entering the mech_stateVectorMgr command or querying the entire object
returns a summary of the object contents by property.

® The MachineState.X property does not show the actual machine state, but
only indicates the number of state components.

® The block state managers of BlockStates are structures, arranged in the
array by class: MECH.RPJointStateMgr, MECH.SJointStateMgr, and
MECH.PointCurveStateMgr. The components of each manager contain:

= The joint block and prismatic, revolute, and spherical primitive names
= The position and velocity values and units

= The FixedAtT O flag indicating if the primitive is actuated with initial
conditions.

Once you define a MachineState object, you can query the properties
individually by entering full property name:

MachineState.MachineName
MachineState.X

Some examples illustrate the use of the state vector manager.
Example: One Primitive

Open the model mech_spen in the Demos library. Select one of the
SimMechanics blocks and enter
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machinestate = mech_stateVectorMgr(gcb)

at the command line. The command returns

machinestate =
MECH.StateVectorMgr
MachineName: 'mech_spen/Ground'
X: [0 0]
BlockStates: [1x1 MECH.RPJointStateMgr]
StateNames: {2x1 cell}

The first line in the object is the class and the last four are the properties. The
model mech_spen contains one Joint block (a Revolute), with two states (angle
and angular velocity).

Query individual properties. Entering machinestate.machinename returns

mech_spen/Ground

referring to the one Ground block in the model. Entering machinestate.X
returns

0 0

indicating a two-component state vector (N = 2, position and velocity).
Entering machinestate.blockstates returns
MECH.RPJointStateMgr

BlockName: 'Revolute’
Primitive: 'R1'
Position: O
PositionUnits: 'rad’
Velocity: O
VelocityUnits: 'rad/s'
FixedAtT 0: 'off'

There are one Joint and no Point-Curve Constraints, and the Joint is a
Revolute. So there is only one state manager of class MECH.RPJointStateMgr.
This property gives detailed Joint information: block name, primitive name,
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position and velocity values and units, and the absence of initial condition
actuators.

Entering machinestate.statenames returns
'Revolute:R1:Position’

‘Revolute:R1:Velocity'

the names of the Joint block, the joint primitive, and the states.

Example: Multiple Primitives

Construct an unnamed model with Ground and Body blocks connected by a
Telescoping Joint. Then select one of the blocks and enter machinestate =
mech_stateVectorMgr(gcb) at the command line. Simulink returns

machinestate =
MECH.StateVectorMgr

MachineName: ‘'untitled/Ground'

X: [00000O0O0O0 O O]

BlockStates: [2x1 MECH.BlockStateMgr]

StateNames: {10x1 cell}
The unnamed model is still associated with its Ground block. There are two
primitives, a spherical and a prismatic, and hence 10 components in the state
vector. To see those primitive names, enter machinestate.statenames to
obtain

'Telescoping:S:Quaternion:1'

'Telescoping:S:Quaternion:2'

'Telescoping:S:Quaternion:3'

'Telescoping:S:Quaternion:4'

‘Telescoping:P1:Position'

‘Telescoping:S:Quaternion_dot:1'

‘Telescoping:S:Quaternion_dot:2'

‘Telescoping:S:Quaternion_dot:3'

‘Telescoping:S:Quaternion_dot:4'

‘Telescoping:P1:Velocity'
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The quaternion and the prismatic position make the first five components,

while the quaternion derivative and prismatic velocity make the last five.
See Also Point-Curve Constraint, Prismatic, Revolute, Spherical

See “Counting Degrees of Freedom” on page 4-67.

See “Trimming SimMechanics Models” on page 7-12 and “Linearizing
SimMechanics Models” on page 7-23.

In Simulink, see gcb, gcbh, gcs.
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actuator

adjoining CS

assembled joint

An actuator converts a Simulink signal into SimMechanics force/torque or
motion signals.

® You can configure a body actuator to apply forces/torques to a body either as
an explicit function of time or through feedback forces/torques.

® You can configure a joint actuator to apply forces/torques between the bodies
connected on either side of the joint.

® You can configure a driver actuator to apply relative motion between the
bodies connected on either side of the driver.

® SimMechanics also has two specialized actuators, one for setting joint initial
conditions and one for applying stiction to a joint.

In SimMechanics, an Actuator block has an open round SimMechanics
connector port O for connecting with a Body, Joint, or Driver block and an
angle bracket > Simulink inport for connecting with normal Simulink blocks,
such as Source blocks for generating force/torque signals.

See also body, connector port, driver, initial condition actuator, joint, primitive
Jjoint, sensor, and stiction actuator.

The adjoining CS of a Body CS is the CS on the neighboring body or ground
directly connected to the original Body CS by a Joint, Constraint, or Driver.

See also body, Body CS, coordinate system (CS), grounded CS, and World.

Restricts the Body coordinate systems (CSs) on the two bodies at either end of
the joint.

¢ For an assembled prismatic joint, the two Body CS origins must lie along the
prismatic axis. The two Bodies translate relatively along the same axis.

For an assembled joint with multiple prismatic primitives, the two Body CS
origins must lie in the plane or space defined by the directions of the
prismatic axes.

® For an assembled revolute joint, the two Body CS origins must be collocated.
The two Bodies rotate relatively about the same axis.

For an assembled joint with multiple revolute primitives, the two Body CS
origins must be collocated.
® For an assembled spherical joint, the two Body CS origins must be collocated

at the spherical primitive’s pivot point. The two Bodies pivot relatively about
this common origin.
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assembly
tolerance

axis-angle
rotation

You specify an assembly tolerance for assembled joints, the maximum
dislocation distance allowed between all pairs of assembled Body CS origins
and the maximum angle of misalignment between all pairs of assembled Body
motion axes. If the distance dislocations and/or axis misalignments in an
assembled joint grow larger than the assembly tolerance, the simulation stops
with an error.

See also assembly tolerance, Body CS, collocation, disassembled joint, joint, and
primitive joint.

Determines how closely an assembled joint must be collocated and aligned. An
assembled joint is connected on either side to Body coordinate systems (CSs) on

two Bodies and restricts the relative configurations and motions of those Body
CSs.

The assembly tolerances set the maximum dislocation of Body CS origins and
maximum misalignment of motion axes allowed in assembled joints during the
simulation.

® For assembled prismatic primitives, each pair of Body CS origins must lie in
the subspace defined by the prismatic axis(es). Each pair of Bodies translates
along this (these) common axis(es).

® For assembled revolute primitives, each pair of Body CS origins must be
collocated and their respective rotational axes aligned. Each pair of Bodies
rotates about this (these) common axis(es).

¢ For an assembled spherical primitive, the pair of Body CS origins must be
collocated. The two Bodies pivot about this common origin.

If the two Body CSs separate or the joint axes misalign in a way that makes
their connecting assembled joint primitives no longer respect the assembly
tolerances, the simulation stops with an error.

See also assembled joint, Body CS, collocation, disassembled joint, and joint.

A representation of a three-dimensional spherical rotation as a rotation axis
vector n = (ny,n,,n,) of unit length (n*n = nx2 + ny2 + nZ2 = 1) and a rotation
angle 0. Define the rotation axis by the vector n; rotate about that axis by 6
using the right-hand rule.

The rotation axis direction is equivalent to specifying two independent angles;
0 is the third independent angle making up the rotation.

In VRML, you represent body rotations by a vector signal [n,, Ny Ny 0].
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base (base body)

body

Body CS

See also degree of freedom (DoF), Euler angles, primitive joint, quaternion,
right-hand rule, rotation matrix, and VRML.

The point from which the joint is directed. The joint directionality runs from
base to follower body.

Joint directionality sets the direction and the positive sign of all joint
position/angle, motion, and force/torque data.

See also body, directionality, follower (follower body), and right-hand rule.

The basic element of a mechanical system or machine. It is characterized by

® Its mass properties (mass and inertia tensor)
¢ Its position and orientation in space

® Any attached Body coordinate systems

Bodies are connected to one another by joints. Bodies carry no degrees of
freedom.

You can attach to a Body block any number of Body coordinate systems (CSs).
All SimMechanics Bodies automatically maintain a minimum of one Body CS
at the body’s center of gravity (CG). The Body block has special axis triad CS
ports [H, instead of the open, round connector ports O, to indicate the attached
Body CSs.

See also actuator, adjoining CS, Body CS, center of gravity (CG), convex hull,
coordinate system (CS), degree of freedom (DoF), equivalent ellipsoid, inertia
tensor, joint, local CS, mass, and sensor.

A local coordinate system (CS) attached to a body, carried along with that
body’s motion. In general, bodies accelerate as they move, and therefore Body
CSs define noninertial reference frames.

You can attach any number of Body CSs to a Body block, and you can choose
where to place the Body CS origins and how to orient the Body CS axes. The
Body block has special axis triad CS ports M instead of the open, round
connector ports, to give you access to these Body CSs for connecting Joint,
Sensor, and Actuator blocks.

Every Body block has an automatic, minimum Body CS at its center of gravity
(CG). By default, it also has two other Body CSs for connection to adjacent
Joints. The origin and axis orientation of each Body CSs once set by the user
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center of gravity
CRx)

CG

closed loop
system

collocation

composite joint

connection line

during Body configuration, are interpreted as fixed rigidly in that body during
the simulation.

See also body, center of gravity (CG), convex hull, coordinate system (CS),
ground, grounded CS, local CS, reference frame (RF), and World.

The center of gravity or center of mass of a extended body is the point in space
about which the entire body balances in a uniform gravitational field. For
translational dynamics, the body’s entire mass can be considered as if
concentrated at this point.

Every Body block has an automatic, minimum Body coordinate system (CS)
with its origin at the CG — the CG CS. This origin point and the Body CS
coordinate axes remain fixed rigidly in the body during the simulation.

See also body, Body CS, degree of freedom (DoF), inertia tensor, kinematics, and
primitive joint.

See center of gravity (CG).

You can disconnect a closed loop system into two separate systems only by
cutting more than one joint. The number of closed loops is equal to the

minimum number, minus one, of cuttings needed to disconnect the system into
two systems.

See also open system and topology.

Two points in space are collocated if they are coincident, within assembly
tolerances.

See also assembled joint, assembly tolerance, and disassembled joint.

A joint compounded from more than one joint primitive and thus representing
more than one degree of freedom. The joint primitives constituting a composite
joint are the primitives of that joint.

A spherical primitive represents three rotational degrees of freedom, but is
treated as a primitive.

See also constrained joint, degree of freedom (DoF), joint, and primitive joint.

You connect each SimMechanics block to another by using SimMechanics
connection lines. These lines function only with SimMechanics blocks. They do
not carry signals, unlike normal Simulink lines, and cannot be branched. You
cannot link connection lines directly to Simulink lines.
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connector port

constrained
joint

constraint

Connection lines appear red and dashed if they are not anchored at both ends
to a connector port O. Once you so anchor them, the lines become black and
solid.

See also actuator, connector port, and sensor.

A special anchor for a connection line. Each SimMechanics block has one or
more open round SimMechanics connector ports O for connecting to other
SimMechanics blocks. You must connect these round ports only to other
SimMechanics round ports. When an open connector port O is attached to a
connection line, the Port changes to solid e.

A special Connection Port block is provided in the Library Browser to create a
round SimMechanics connector port for an entire subsystem on that
subsystem’s boundary.

See also actuator, connection line, and sensor.

A composite joint with one or more built-in constraints relating the joint’s
primitives.

An example is the Screw block, which has a prismatic and a revolute primitive
with their motions in fixed ratio. Only one of these degrees of freedom is
independent.

See also degree of freedom (DoF), joint, and primitive joint.

A restriction among degrees of freedom imposed independently of any applied
forces/torques. A constraint removes one or more independent degrees of
freedom, unless that constraint is redundant and restricts degrees of freedom
that otherwise could not move anyway. Constraints can also create
inconsistencies with the applied forces/torques that lead to simulation errors.

Constraints are kinematic: they must involve only coordinates and/or
velocities. Higher derivatives of coordinates (accelerations, etc.) are
determined by the Newtonian force/torque equations and cannot be
independently constrained.

Constraints can be holonomic (integrable into a form involving only
coordinates) or nonholonomic (not integrable; that is, irreducibly involving
velocities).

The relationship specified by a constraint can be an explicit function of time
(rheonomic) or not (scleronomic). In SimMechanics, scleronomic constraints are
called Constraints, and rheonomic constraints are called Drivers.
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convex hull

coordinate
system (CS)

Cs

degree of
freedom (DoF)

SimMechanics Constraint/Driver blocks are attached to pairs of Body blocks.
See also body, degree of freedom (DoF), directionality, and driver.

The surface of minimum area with convex (outward-bowing) curvature that
passes through all the spatial points in a set. In three dimensions, this set must
contain at least four non-coplanar points to make a closed surface with nonzero
enclosed volume.

In SimMechanics, the convex hull is an option for visualizing a body. The set of
points is all the Body coordinate system (CS) origins configured in that Body
block. The visualization of an entire machine is the set of the convex hulls of all
its bodies.

If a Body has fewer than four non-coplanar Body CSs, its convex hull is a
lower-dimensional figure: three Body CSs produce a triangle without volume;
two Body CSs produce a line without area; and one Body CS (the CS at the
center of gravity) a point without length.

See also body, Body CS, and equivalent ellipsoid.

A coordinate system is defined, in a particular reference frame (RF), by a choice
of origin and orientation of coordinate axes, assumed orthogonal and Cartesian
(rectangular). An observer attached to that CS measures distances from that

origin and directions relative to those axes.

SimMechanics has two CS types:

= World: global or absolute inertial CS at rest

= Local CS:
Grounded CS
Body CS (includes center of gravity or CG CS)

See also body, Body CS, center of gravity (CG), convex hull, grounded CS, local
CS, reference frame (RF), and World.

A coordinate system (CS).

A single coordinate of relative motion between two bodies. Such a coordinate is
free only if it can respond without constraint or imposed motion to externally
applied forces or torques. For translational motion, a DoF is a linear coordinate
along a single direction. For rotational motion, a DoF is an angular coordinate
about a single, fixed axis.
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directionality

disassembled
joint

DoF

A prismatic joint primitive represents a single translational DoF. A revolute
joint primitive represents a single rotational DoF. A spherical joint primitive
represents three rotational DoF's in angle-axis form. A weld joint primitive
represents zero DoFs.

See also body, coordinate system (CS), dynamics, joint, and kinematics.

The directionality of a joint, constraint, or driver is its direction of forward
motion.

The joint directionality is set by the order of the joint’s connected bodies and

the direction of the joint axis vector. One body is the base body, the other the
follower body. The joint direction runs from base to follower, up to the sign of
the joint axis vector. Reversing the base-follower order or the joint axis vector
direction reverses the forward direction of the joint.

Joint directionality sets the direction and the positive sign of all joint
position/angle, motion, and force/torque data.

Directionality of constraints and drivers is similar, except there is no joint axis,
only the base-follower sequence.

See also base (base body), body, follower (follower body), joint, and right-hand
rule.

A disassembled joint need not respect the assembly tolerance of your machine.

® For a disassembled prismatic primitive, the Body coordinate system (CS)
origins do not have to lie on the prismatic axis. The Bodies translate
relatively along misaligned axes.

® For a disassembled revolute primitive, the Body CS origins do not have to be
collocated. The Bodies rotate relatively about misaligned axes.

® The a disassembled spherical primitive, the Body CS origins do not have to
be collocated. The Bodies pivot relatively about these two dislocated origins.

You can only use disassembled joints in a closed loop, with no more than one
per loop.

See also assembled joint, assembly tolerance, closed loop system, collocation,
and topology.

A degree of freedom (DoF).
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driver

dynamics

equivalent
ellipsoid

A constraint that restricts degrees of freedom as an explicit function of time (a
rheonomic constraint) and independently of any applied forces/torques. A

driver removes one or more independent degrees of freedom, unless that driver
is inconsistent with the applied forces/torques and leads to a simulation error.

In SimMechanics, you specify the driver function of time in a dialog box in
terms of an input Simulink signal from a Driver Actuator.

SimMechanics Driver blocks are attached to pairs of Body blocks.

See also actuator, body, constraint, directionality, and degree of freedom (DoF).

A forward dynamic analysis of a mechanical system specifies

® The topology of how bodies are connected

¢ The degrees of freedom (DoF's) and constraints among DoF's

e All the forces/torques applied to the bodies

® The mass properties (masses and inertia tensors) of the bodies
¢ The initial condition of all DoF's:

= Initial linear coordinates and velocities
= Initial angular coordinates and velocities

The analysis then solves Newton’s laws to find the system’s motion for all later
times.

Inverse dynamics is the same, except that the system’s motion is specified and
the forces/torques necessary to produce this motion are determined.

Dynamics is distinguished from kinematics by explicit specification of applied
forces/torques and body mass properties.

See also constraint, degree of freedom (DoF), inertia tensor, kinematics, mass,
and topology.

The equivalent ellipsoid of a body is the homogeneous solid ellipsoid, centered
at the body’s center of gravity, with the same principal moments of inertia and
principal axes as the body. A homogeneous solid ellipsoid is the simplest body
with three distinct principal moments.

Every body has a unique equivalent ellipsoid, but a given homogeneous
ellipsoid corresponds to an infinite number of other, more complicated, bodies.
The rotational dynamics of a body depend only on its equivalent ellipsoid
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Euler angles

follower
(follower body)

ground

grounded CS
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(which determines its principal moments and principal axes), not on its
detailed shape.

In SimMechanics, the equivalent ellipsoid is an option for visualizing a body.

See also body, convex hull, dynamics, inertia tensor, principal axes, and
principal inertial moments.

A representation of a three-dimensional spherical rotation as a product of three
successive independent rotations about three independent axes by three
independent (Euler) angles.

See also axis-angle rotation, degree of freedom (DoF), primitive joint,
quaternion, right-hand rule, and rotation matrix.

The point to which the joint is directed. The joint directionality runs from base
to follower body.

Joint directionality sets the direction and the positive sign of all joint
position/angle, motion, and force/torque data.

See also base (base body), body, directionality, and right-hand rule.

A ground or ground point is a special point fixed at rest in the absolute or global
inertial World reference frame.

Each ground has an associated grounded coordinate system (CS). The
grounded CS’s origin is identical to the ground point, and its coordinate axes
are always parallel to the coordinate axes of World.

See also body, coordinate system (CS), grounded CS, and World.

A local CS attached to a ground point. It is at rest in World, but its origin is
wherever the ground point is and therefore in general shifted with respect to
the World CS origin. The coordinate axes of a grounded CS are always parallel
to the World CS axes.

The World coordinate axes are defined so that:

+x points right
+y points up (gravity in —y direction)

+z points out of the screen, in three dimensions

You automatically create a Gounded CS whenever you set up a Ground block.
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inertia tensor

initial condition
actuator

joint

See also adjoining CS, body, Body CS, coordinate system (CS), ground, local
CS, and World.

The inertia or moment of inertia tensor of an extended rigid body describes its
internal mass distribution and the body’s angular acceleration in response to
an applied torque.

Let V be the body’s volume and p(r) its mass density, a function of position r
within the body. Then the components of the inertia tensor I are:

|4

This tensor is a real, symmetric 3-by-3 matrix or equivalent MATLAB
expression.

SimMechanics always assumes the inertia tensor of a body is evaluated in that
body’s center of gravity coordinate system (CG CS). That is, the origin is set to
the body’s CG and the coordinate axes are the CG CS axes.

Because the CG CS of a Body block is fixed rigidly in the body during
simulation, the values of the inertia tensor components do not change as the
body rotates.

See also body, Body CS, equivalent ellipsoid, mass, principal axes, and
principal inertial moments.

An initial condition actuator gives you a way to move a system’s degrees of
freedom nondynamically to prepare a system for dynamical integration, in a
way consistent with all constraints.

In SimMechanics, the initial conditions are applied to a joint primitive.
See also actuator, dynamics, and kinematics.

Represents one or more mechanical degrees of freedom between two bodies.
Joint blocks connect two Body blocks in a SimMechanics schematic. Joints
have no mass properties such as mass or an inertia tensor.

A joint primitive represents one translational or rotational degree of freedom
or one spherical (three rotational degrees of freedom in angle-axis form).
Prismatic and revolute primitives have motion axis vectors. A weld primitive
has no degrees of freedom.
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kinematics

local CS
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A primitive joint contains one joint primitive. A composite joint contains more
than one joint primitive.

Joints have a directionality set by their base-to-follower Body order and the
direction of the joint primitive axis. The sign of all position/angle, motion, and
force/torque data is determined by this directionality.

See also actuator, assembled joint, base (base body), body, composite joint,
constrained joint, constraint, degree of freedom (DoF), directionality,
disassembled joint, follower (follower body), ground, inertia tensor, massless
connector, primitive joint, and sensor.

A kinematic analysis of a mechanical system specifies topology, degrees of
freedom (DoFs), motions, and constraints, without specification of applied
forces/torques or the mass properties of the bodies.

The machine state at some time is the set of all

® Instantaneous positions

¢ Instantaneous velocities

of all bodies in the system, for both linear (translational) and angular
(rotational) DoF's of the bodies.

Specification of applied forces/torques and solution of the system’s motion as a
function of time are given by the system’s dynamics.

See also constraint, degree of freedom (DoF), dynamics, and topology.

A local coordinate system (CS) is attached to either a Ground or a Body:

e Grounded CS
¢ Body CS

You define Body CSs when you configure the properties of a Body. A Grounded
CS is automatically defined when you represent a ground point by a Ground
block.

A grounded CS is always at rest in the World reference frame. The origin of this
Grounded CS is the same point as the ground point and therefore in general
not the same as the World CS origin.

A Body CS is fixed rigidly in the body and carried along with that body’s
motion. To indicate an attached coordinate system, a Body block has a special
axis triad CS port [H in place of the open, round connector port O.
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See also body, Body CS, coordinate system (CS), grounded CS, reference frame
(RF), and World.

A machine precision constraint is a constraint numerically implemented on the
constrained degrees of freedom to the precision of your computer processor’s
arithmetic.

The precision to which the constraint is maintained depends on scale or the
physical system of units.

See also constraint, stabilizing constraint, and tolerancing constraint.

The proportionality between a force on a body and the resulting translational
acceleration of that body.

Let V be the body’s volume and p(r) its mass density, a function of position r
within the body. Then the mass m is:

m = Ide(r)
\%4

The mass is a real, positive scalar or equivalent MATLAB expression.

A body’s mass is insensitive to choice of reference frame, coordinate system
origin, or coordinate axes orientation.

See also body and inertia tensor.

A massless connector is equivalent to two joints whose respective axes are
spatially separated by a fixed distance. You can specify the gap distance and
the axis of separation. The space between the degrees of freedom is filled by a
rigid connector of zero mass.

You cannot actuate or sense a massless connector.
See also disassembled joint and joint.

You can disconnect an open system into two separate systems by cutting no
more than one joint.

Such systems can be divided into two types:

® An open chain is a series of bodies connected by joints and topologically
equivalent to a line.
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® An open tree is a series of bodies connected by joints in which at least one
body has more than two joints connected to it. Bodies with more than two
connected joints define branch points in the tree. A tree can be disconnected
into multiple chains by cutting the branch points.

The end body of a chain is a body with only one connected joint.
See also closed loop system and topology.

You obtain the physical tree representation of a machine topology from the full
machine topology by removing actuators and sensors and cutting each closed
loop once. The physical tree retains bodies, joints, constraints, and drivers.

See also closed loop system, open system, spanning tree, and topology.

A primitive joint expresses one degree of freedom (DoF) or coordinate of motion,
if this DoF is a translation along one direction (prismatic joint) or a rotation
about one fixed axis (revolute joint).

In SimMechanics, a spherical joint (three DoFs: two rotations to specify
directional axis, one rotation about that axis) is also treated as a primitive
joint.

These three types of primitive joints are the joint primitives from which
composite joints are built up.

A weld primitive has no degrees of freedom.
See also composite joint and joint.

The inertia tensor of a body is real and symmetric and therefore can be
diagonalized, with three real eigenvalues and three orthogonal eigenvectors.
The principal axes of a body are these eigenvectors.

See also equivalent ellipsoid, inertia tensor, and principal inertial moments.

The inertia tensor of a body is real, symmetric, and diagonalizable, with three
real eigenvalues and three orthogonal eigenvectors. The principal inertial
moments or principal moments of inertia of a body are these eigenvalues, the
diagonal values when the tensor is diagonalized.

The principal moments of a real body satisfy the triangle inequalities: the sum
of any two moments is greater than or equal to the third moment.
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quaternion

reference frame

RF)

RF
right-hand rule

rotation matrix

If two of the three principal moments are equal, the body has some symmetry
and is dynamically equivalent to a symmetric top. If all three principal
moments are equal, the body is dynamically equivalent to a sphere.

See also equivalent ellipsoid, inertia tensor, and principal axes.

A quaternion represents a three-dimensional spherical rotation as a
four-component row vector of unit length:

q = [ny,*sin(0/2) ny*sin(6/2) ny,*sin(0/2) cos(6/2)],
with g*q = 1. The vector n = (nx,ny,nz) is a three-component vector of unit

length: n*n = 1. The unit vector n specifies the axis of rotation. The rotation
angle about that axis is 0 and follows the right-hand rule.

The axis-angle representation of the rotation is just [n 6 ].

See also axis-angle rotation, degree of freedom (DoF), Euler angles, primitive
Jjoint, right-hand rule, and rotation matrix.

The state of motion of an observer.

An inertial RF is a member of a set of all RF's moving uniformly with respect to
one another, without relative acceleration.

An RF is necessary but not sufficient to define a coordinate system (CS). A CS
which requires an origin point and a oriented set of three orthogonal axes.

See also coordinate system (CS), local CS, and World.
A reference frame (RF).

The right-hand rule is the standard convention for determining the sign of a
rotation: point your right thumb into the positive rotation axis and curl your
fingers into the forward rotational direction.

See also degree of freedom (DoF), directionality, and joint.
A representation of a three-dimensional spherical rotation as a 3-by-3 real,

orthogonal matrix R: RTR = RRT = I, where I is the 3-by-3 identity and RT is
the transpose of R.

Ry B9 B3

Rgq Rgg Ryg
Rgy Rgg Ry

R =
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schematic
diagram

sensor

In general, R requires three independent angles to specify the rotation fully.
There are many ways to represent the three independent angles. Here are two:

® You can form three independent rotation matrices R, Ry, R3, each
representing a single independent rotation. Then compose the full rotation
matrix R with respect to fixed coordinate axes (like World) as a product of
these three: R = R3*Ro*Rq. The three angles are Euler angles.

® You can represent R in terms of an axis-angle rotation n = (n,,n,,n,) and 6,
with n*n = 1. The three independent angles are 6 and the two needed to
orient n. Form the antisymmetric matrix o :

Then Rodrigues’ formula simplifies R:
R = exp((:)e) = i +©sing + (:)2(1 —cos0)

See also axis-angle rotation, degree of freedom (DoF), Euler angles, primitive
joint, quaternion, and right-hand rule.

A connected group of SimMechanics blocks. An entire block diagram in a
Simulink model window has one or more schematics, each representing a
distinct machine.

Measures the motion of, or forces/torques acting on, a body or joint. A sensor
can also measure the reaction forces in a constraint or driver constraining a
pair of bodies.

In SimMechanics, a Sensor block has an open round SimMechanics connector
port O for connecting with a Body or Joint block and an angle bracket >
Simulink outport for connecting with normal Simulink blocks, such as a Sinks
block like Scope.

See also actuator, body, connector port, constraint, driver, joint, and primitive
joint.
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stabilizing
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topology

You obtain the spanning tree representation of a machine topology from the
full machine topology by removing everything except bodies and joints and
cutting each closed loop once.

See also closed loop system, open system, physical tree, and topology.

Numerically implements a constraint by modifying the dynamics of a system
so that the constraint manifold is attractive, without changing the constrained
solution. This constraint solver type is computationally the most efficient.

The precision to which the constraint is maintained depends on scale or the
physical system of units.

See also constraint, machine precision constraint, and tolerancing constraint.

Applies discontinuous friction forces to a joint primitive according to the
relative velocity of one body with the other body.

If this relative velocity drops below a specified threshold, the relative motion
ceases and the bodies or joints become locked rigidly to one another by static
friction.

Above that threshold, the bodies or joints move relative to one another with
kinetic friction.

See also actuator, composite joint, dynamics, joint, and primitive joint.

A tolerancing constraint is numerically implemented on constrained degrees of
freedom only up to a specified accuracy and/or precision.

This accuracy/precision is independent of any accuracy/precision limits on the
solver used to integrate the system’s motion, although constraints cannot be
maintained to greater accuracy than the accuracy of the solver.

The precision to which the constraint is maintained depends on scale or the
physical system of units.

Tolerancing constraints are useful in realistic simulation of slippage (“slop” or
“play”) in constraints.

See also constraint, machine precision constraint, and stabilizing constraint.
The global connectivity of the elements of a machine.

For mechanical models, the elements are bodies and the connections are joints,
constraints, and drivers. Two topologies are equivalent if you can transform one
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World
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system into another by continuous deformations and without cutting
connections or joining elements.

An open system has no closed loops.

® An open chain is topologically equivalent to a line; and each body is
connected to only two other bodies, if the body is internal, or one other body
if it is at an end.

® An open tree has one or more branch points. A branch point is where an
internal body is connected to more than two other bodies. A tree can be
disconnected into multiple chains by cutting at the branch points.

A closed loop system has one or more closed loops. The number of closed loops
is equal to the minimum number of joints, minus one, that must be cut to
dissociate a system into two disconnected systems.

An actual system can have one of these primitive topologies or can be built up
from multiple primitive topologies.

See also body, closed loop system, joint, and open system.

Virtual Reality Modeling Language, an open, Web-oriented ISO standard for
defining three-dimensional virtual worlds in multimedia and the Internet. The
Virtual Reality Toolbox uses VRML to create and populate virtual worlds with
user-defined bodies.

In VRML, body rotations are represented in the axis-angle form. The
SimMechanics RotationMatrix2VR block converts rotation matrices to the
equivalent axis-angle forms.

See also axis-angle rotation and the Web3D Consortium at www.web3d.org.

In SimMechanics, World is both the absolute inertial reference frame (RF) and
absolute coordinate system (CS) in that RF. World has a fixed origin and fixed
coordinate axes that cannot be changed.

The World coordinate axes are defined so that:
+x points right
+y points up (gravity in —y direction)
+z points out of the screen, in three dimensions

See also adjoining CS, coordinate system (CS), ground, grounded CS, and
reference frame (RF).


http://www.web3d.org
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